| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: net: fix use after free in fwnet_finish_incoming_packet()
The netif_rx() function frees the skb so we can't dereference it to
save the skb->len. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix warning and UAF when destroy the MR list
If the MR allocate failed, the MR recovery work not initialized
and list not cleared. Then will be warning and UAF when release
the MR:
WARNING: CPU: 4 PID: 824 at kernel/workqueue.c:3066 __flush_work.isra.0+0xf7/0x110
CPU: 4 PID: 824 Comm: mount.cifs Not tainted 6.1.0-rc5+ #82
RIP: 0010:__flush_work.isra.0+0xf7/0x110
Call Trace:
<TASK>
__cancel_work_timer+0x2ba/0x2e0
smbd_destroy+0x4e1/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
BUG: KASAN: use-after-free in smbd_destroy+0x4fc/0x990
Read of size 8 at addr ffff88810b156a08 by task mount.cifs/824
CPU: 4 PID: 824 Comm: mount.cifs Tainted: G W 6.1.0-rc5+ #82
Call Trace:
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
smbd_destroy+0x4fc/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Allocated by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x7a/0x90
_smbd_get_connection+0x1b6f/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x143/0x1b0
__kmem_cache_free+0xc8/0x330
_smbd_get_connection+0x1c6a/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Let's initialize the MR recovery work before MR allocate to prevent
the warning, remove the MRs from the list to prevent the UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix xsk_diag use-after-free error during socket cleanup
Fix a use-after-free error that is possible if the xsk_diag interface
is used after the socket has been unbound from the device. This can
happen either due to the socket being closed or the device
disappearing. In the early days of AF_XDP, the way we tested that a
socket was not bound to a device was to simply check if the netdevice
pointer in the xsk socket structure was NULL. Later, a better system
was introduced by having an explicit state variable in the xsk socket
struct. For example, the state of a socket that is on the way to being
closed and has been unbound from the device is XSK_UNBOUND.
The commit in the Fixes tag below deleted the old way of signalling
that a socket is unbound, setting dev to NULL. This in the belief that
all code using the old way had been exterminated. That was
unfortunately not true as the xsk diagnostics code was still using the
old way and thus does not work as intended when a socket is going
down. Fix this by introducing a test against the state variable. If
the socket is in the state XSK_UNBOUND, simply abort the diagnostic's
netlink operation. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs: Fix panic about slab-out-of-bounds caused by ntfs_listxattr()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in ntfs_list_ea fs/ntfs3/xattr.c:191 [inline]
BUG: KASAN: slab-out-of-bounds in ntfs_listxattr+0x401/0x570 fs/ntfs3/xattr.c:710
Read of size 1 at addr ffff888021acaf3d by task syz-executor128/3632
Call Trace:
ntfs_list_ea fs/ntfs3/xattr.c:191 [inline]
ntfs_listxattr+0x401/0x570 fs/ntfs3/xattr.c:710
vfs_listxattr fs/xattr.c:457 [inline]
listxattr+0x293/0x2d0 fs/xattr.c:804
Fix the logic of ea_all iteration. When the ea->name_len is 0,
return immediately, or Add2Ptr() would visit invalid memory
in the next loop.
[almaz.alexandrovich@paragon-software.com: lines of the patch have changed] |
| Ametys CMS v4.4.1 contains a persistent cross-site scripting vulnerability in the link directory's input fields for external links. Attackers can inject malicious script code in link text and descriptions to execute persistent attacks that compromise user sessions and manipulate application modules. |
| Cain & Abel 4.9.56 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted binary path to inject malicious executables that will be launched with LocalSystem permissions. |
| Kyocera Command Center RX ECOSYS M2035dn contains a directory traversal vulnerability that allows unauthenticated attackers to read sensitive system files by manipulating file paths under the /js/ path. Attackers can exploit the issue by sending requests like /js/../../../../.../etc/passwd%00.jpg (null-byte appended traversal) to access critical files such as /etc/passwd and /etc/shadow. |
| BlueSoleilCS 5.4.277 contains an unquoted service path vulnerability in its Windows service configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path in 'C:\Program Files\IVT Corporation\BlueSoleil\BlueSoleilCS.exe' to inject malicious executables and escalate privileges. |
| WOW21 5.0.1.9 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path to inject malicious executables that will be launched with LocalSystem permissions during service startup. |
| Beehive Forum 1.5.2 contains a host header injection vulnerability in the forgot password functionality that allows attackers to manipulate password reset requests. Attackers can inject a malicious host header to intercept password reset tokens and change victim account passwords without direct authentication. |
| NanoCMS 0.4 contains an authenticated file upload vulnerability that allows remote code execution through unvalidated page content creation. Authenticated attackers can upload PHP files with arbitrary code to the server's pages directory by exploiting the page creation mechanism without proper input sanitization. |
| Owlfiles File Manager 12.0.1 contains a path traversal vulnerability in its built-in HTTP server that allows attackers to access system directories. Attackers can exploit the vulnerability by crafting GET requests with directory traversal sequences to access restricted system directories on the device. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sysfs: Fix attempting to call device_add multiple times
device_add shall not be called multiple times as stated in its
documentation:
'Do not call this routine or device_register() more than once for
any device structure'
Syzkaller reports a bug as follows [1]:
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:33!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[...]
Call Trace:
<TASK>
__list_add include/linux/list.h:69 [inline]
list_add_tail include/linux/list.h:102 [inline]
kobj_kset_join lib/kobject.c:164 [inline]
kobject_add_internal+0x18f/0x8f0 lib/kobject.c:214
kobject_add_varg lib/kobject.c:358 [inline]
kobject_add+0x150/0x1c0 lib/kobject.c:410
device_add+0x368/0x1e90 drivers/base/core.c:3452
hci_conn_add_sysfs+0x9b/0x1b0 net/bluetooth/hci_sysfs.c:53
hci_le_cis_estabilished_evt+0x57c/0xae0 net/bluetooth/hci_event.c:6799
hci_le_meta_evt+0x2b8/0x510 net/bluetooth/hci_event.c:7110
hci_event_func net/bluetooth/hci_event.c:7440 [inline]
hci_event_packet+0x63d/0xfd0 net/bluetooth/hci_event.c:7495
hci_rx_work+0xae7/0x1230 net/bluetooth/hci_core.c:4007
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panfrost: Fix GEM handle creation ref-counting
panfrost_gem_create_with_handle() previously returned a BO but with the
only reference being from the handle, which user space could in theory
guess and release, causing a use-after-free. Additionally if the call to
panfrost_gem_mapping_get() in panfrost_ioctl_create_bo() failed then
a(nother) reference on the BO was dropped.
The _create_with_handle() is a problematic pattern, so ditch it and
instead create the handle in panfrost_ioctl_create_bo(). If the call to
panfrost_gem_mapping_get() fails then this means that user space has
indeed gone behind our back and freed the handle. In which case just
return an error code. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix use-after-free
We've already freed the assoc_data at this point, so need
to use another copy of the AP (MLD) address instead. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: adv7511: unregister cec i2c device after cec adapter
cec_unregister_adapter() assumes that the underlying adapter ops are
callable. For example, if the CEC adapter currently has a valid physical
address, then the unregistration procedure will invalidate the physical
address by setting it to f.f.f.f. Whence the following kernel oops
observed after removing the adv7511 module:
Unable to handle kernel execution of user memory at virtual address 0000000000000000
Internal error: Oops: 86000004 [#1] PREEMPT_RT SMP
Call trace:
0x0
adv7511_cec_adap_log_addr+0x1ac/0x1c8 [adv7511]
cec_adap_unconfigure+0x44/0x90 [cec]
__cec_s_phys_addr.part.0+0x68/0x230 [cec]
__cec_s_phys_addr+0x40/0x50 [cec]
cec_unregister_adapter+0xb4/0x118 [cec]
adv7511_remove+0x60/0x90 [adv7511]
i2c_device_remove+0x34/0xe0
device_release_driver_internal+0x114/0x1f0
driver_detach+0x54/0xe0
bus_remove_driver+0x60/0xd8
driver_unregister+0x34/0x60
i2c_del_driver+0x2c/0x68
adv7511_exit+0x1c/0x67c [adv7511]
__arm64_sys_delete_module+0x154/0x288
invoke_syscall+0x48/0x100
el0_svc_common.constprop.0+0x48/0xe8
do_el0_svc+0x28/0x88
el0_svc+0x1c/0x50
el0t_64_sync_handler+0xa8/0xb0
el0t_64_sync+0x15c/0x160
Code: bad PC value
---[ end trace 0000000000000000 ]---
Protect against this scenario by unregistering i2c_cec after
unregistering the CEC adapter. Duly disable the CEC clock afterwards
too. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix error code path in acpi_ds_call_control_method()
A use-after-free in acpi_ps_parse_aml() after a failing invocaion of
acpi_ds_call_control_method() is reported by KASAN [1] and code
inspection reveals that next_walk_state pushed to the thread by
acpi_ds_create_walk_state() is freed on errors, but it is not popped
from the thread beforehand. Thus acpi_ds_get_current_walk_state()
called by acpi_ps_parse_aml() subsequently returns it as the new
walk state which is incorrect.
To address this, make acpi_ds_call_control_method() call
acpi_ds_pop_walk_state() to pop next_walk_state from the thread before
returning an error. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READ
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free bug in brcmf_netdev_start_xmit()
> ret = brcmf_proto_tx_queue_data(drvr, ifp->ifidx, skb);
may be schedule, and then complete before the line
> ndev->stats.tx_bytes += skb->len;
[ 46.912801] ==================================================================
[ 46.920552] BUG: KASAN: use-after-free in brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac]
[ 46.928673] Read of size 4 at addr ffffff803f5882e8 by task systemd-resolve/328
[ 46.935991]
[ 46.937514] CPU: 1 PID: 328 Comm: systemd-resolve Tainted: G O 5.4.199-[REDACTED] #1
[ 46.947255] Hardware name: [REDACTED]
[ 46.954568] Call trace:
[ 46.957037] dump_backtrace+0x0/0x2b8
[ 46.960719] show_stack+0x24/0x30
[ 46.964052] dump_stack+0x128/0x194
[ 46.967557] print_address_description.isra.0+0x64/0x380
[ 46.972877] __kasan_report+0x1d4/0x240
[ 46.976723] kasan_report+0xc/0x18
[ 46.980138] __asan_report_load4_noabort+0x18/0x20
[ 46.985027] brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac]
[ 46.990613] dev_hard_start_xmit+0x1bc/0xda0
[ 46.994894] sch_direct_xmit+0x198/0xd08
[ 46.998827] __qdisc_run+0x37c/0x1dc0
[ 47.002500] __dev_queue_xmit+0x1528/0x21f8
[ 47.006692] dev_queue_xmit+0x24/0x30
[ 47.010366] neigh_resolve_output+0x37c/0x678
[ 47.014734] ip_finish_output2+0x598/0x2458
[ 47.018927] __ip_finish_output+0x300/0x730
[ 47.023118] ip_output+0x2e0/0x430
[ 47.026530] ip_local_out+0x90/0x140
[ 47.030117] igmpv3_sendpack+0x14c/0x228
[ 47.034049] igmpv3_send_cr+0x384/0x6b8
[ 47.037895] igmp_ifc_timer_expire+0x4c/0x118
[ 47.042262] call_timer_fn+0x1cc/0xbe8
[ 47.046021] __run_timers+0x4d8/0xb28
[ 47.049693] run_timer_softirq+0x24/0x40
[ 47.053626] __do_softirq+0x2c0/0x117c
[ 47.057387] irq_exit+0x2dc/0x388
[ 47.060715] __handle_domain_irq+0xb4/0x158
[ 47.064908] gic_handle_irq+0x58/0xb0
[ 47.068581] el0_irq_naked+0x50/0x5c
[ 47.072162]
[ 47.073665] Allocated by task 328:
[ 47.077083] save_stack+0x24/0xb0
[ 47.080410] __kasan_kmalloc.isra.0+0xc0/0xe0
[ 47.084776] kasan_slab_alloc+0x14/0x20
[ 47.088622] kmem_cache_alloc+0x15c/0x468
[ 47.092643] __alloc_skb+0xa4/0x498
[ 47.096142] igmpv3_newpack+0x158/0xd78
[ 47.099987] add_grhead+0x210/0x288
[ 47.103485] add_grec+0x6b0/0xb70
[ 47.106811] igmpv3_send_cr+0x2e0/0x6b8
[ 47.110657] igmp_ifc_timer_expire+0x4c/0x118
[ 47.115027] call_timer_fn+0x1cc/0xbe8
[ 47.118785] __run_timers+0x4d8/0xb28
[ 47.122457] run_timer_softirq+0x24/0x40
[ 47.126389] __do_softirq+0x2c0/0x117c
[ 47.130142]
[ 47.131643] Freed by task 180:
[ 47.134712] save_stack+0x24/0xb0
[ 47.138041] __kasan_slab_free+0x108/0x180
[ 47.142146] kasan_slab_free+0x10/0x18
[ 47.145904] slab_free_freelist_hook+0xa4/0x1b0
[ 47.150444] kmem_cache_free+0x8c/0x528
[ 47.154292] kfree_skbmem+0x94/0x108
[ 47.157880] consume_skb+0x10c/0x5a8
[ 47.161466] __dev_kfree_skb_any+0x88/0xa0
[ 47.165598] brcmu_pkt_buf_free_skb+0x44/0x68 [brcmutil]
[ 47.171023] brcmf_txfinalize+0xec/0x190 [brcmfmac]
[ 47.176016] brcmf_proto_bcdc_txcomplete+0x1c0/0x210 [brcmfmac]
[ 47.182056] brcmf_sdio_sendfromq+0x8dc/0x1e80 [brcmfmac]
[ 47.187568] brcmf_sdio_dpc+0xb48/0x2108 [brcmfmac]
[ 47.192529] brcmf_sdio_dataworker+0xc8/0x238 [brcmfmac]
[ 47.197859] process_one_work+0x7fc/0x1a80
[ 47.201965] worker_thread+0x31c/0xc40
[ 47.205726] kthread+0x2d8/0x370
[ 47.208967] ret_from_fork+0x10/0x18
[ 47.212546]
[ 47.214051] The buggy address belongs to the object at ffffff803f588280
[ 47.214051] which belongs to the cache skbuff_head_cache of size 208
[ 47.227086] The buggy address is located 104 bytes inside of
[ 47.227086] 208-byte region [ffffff803f588280, ffffff803f588350)
[ 47.238814] The buggy address belongs to the page:
[ 47.243618] page:ffffffff00dd6200 refcount:1 mapcou
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: iomap: fix memory corruption when recording errors during writeback
Every now and then I see this crash on arm64:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000f8
Buffer I/O error on dev dm-0, logical block 8733687, async page read
Mem abort info:
ESR = 0x0000000096000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 64k pages, 42-bit VAs, pgdp=0000000139750000
[00000000000000f8] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Buffer I/O error on dev dm-0, logical block 8733688, async page read
Dumping ftrace buffer:
Buffer I/O error on dev dm-0, logical block 8733689, async page read
(ftrace buffer empty)
XFS (dm-0): log I/O error -5
Modules linked in: dm_thin_pool dm_persistent_data
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ec/0x590 [xfs] (fs/xfs/xfs_trans_buf.c:296).
dm_bio_prison
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -5, agno 0
dm_bufio dm_log_writes xfs nft_chain_nat xt_REDIRECT nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_REJECT
potentially unexpected fatal signal 6.
nf_reject_ipv6
potentially unexpected fatal signal 6.
ipt_REJECT nf_reject_ipv4
CPU: 1 PID: 122166 Comm: fsstress Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7
rpcsec_gss_krb5 auth_rpcgss xt_tcpudp ip_set_hash_ip ip_set_hash_net xt_set nft_compat ip_set_hash_mac ip_set nf_tables
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
pstate: 60001000 (nZCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
ip_tables
pc : 000003fd6d7df200
x_tables
lr : 000003fd6d7df1ec
overlay nfsv4
CPU: 0 PID: 54031 Comm: u4:3 Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7405
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
Workqueue: writeback wb_workfn
sp : 000003ffd9522fd0
(flush-253:0)
pstate: 60401005 (nZCv daif +PAN -UAO -TCO -DIT +SSBS BTYPE=--)
pc : errseq_set+0x1c/0x100
x29: 000003ffd9522fd0 x28: 0000000000000023 x27: 000002acefeb6780
x26: 0000000000000005 x25: 0000000000000001 x24: 0000000000000000
x23: 00000000ffffffff x22: 0000000000000005
lr : __filemap_set_wb_err+0x24/0xe0
x21: 0000000000000006
sp : fffffe000f80f760
x29: fffffe000f80f760 x28: 0000000000000003 x27: fffffe000f80f9f8
x26: 0000000002523000 x25: 00000000fffffffb x24: fffffe000f80f868
x23: fffffe000f80fbb0 x22: fffffc0180c26a78 x21: 0000000002530000
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000001 x13: 0000000000470af3 x12: fffffc0058f70000
x11: 0000000000000040 x10: 0000000000001b20 x9 : fffffe000836b288
x8 : fffffc00eb9fd480 x7 : 0000000000f83659 x6 : 0000000000000000
x5 : 0000000000000869 x4 : 0000000000000005 x3 : 00000000000000f8
x20: 000003fd6d740020 x19: 000000000001dd36 x18: 0000000000000001
x17: 000003fd6d78704c x16: 0000000000000001 x15: 000002acfac87668
x2 : 0000000000000ffa x1 : 00000000fffffffb x0 : 00000000000000f8
Call trace:
errseq_set+0x1c/0x100
__filemap_set_wb_err+0x24/0xe0
iomap_do_writepage+0x5e4/0xd5c
write_cache_pages+0x208/0x674
iomap_writepages+0x34/0x60
xfs_vm_writepages+0x8c/0xcc [xfs 7a861f39c43631f15d3a5884246ba5035d4ca78b]
x14: 0000000000000000 x13: 2064656e72757465 x12: 0000000000002180
x11: 000003fd6d8a82d0 x10: 0000000000000000 x9 : 000003fd6d8ae288
x8 : 0000000000000083 x7 : 00000000ffffffff x6 : 00000000ffffffee
x5 : 00000000fbad2887 x4 : 000003fd6d9abb58 x3 : 000003fd6d740020
x2 : 0000000000000006 x1 : 000000000001dd36 x0 : 0000000000000000
CPU:
---truncated--- |