| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: add missing TID updates on slab deactivation
The fastpath in slab_alloc_node() assumes that c->slab is stable as long as
the TID stays the same. However, two places in __slab_alloc() currently
don't update the TID when deactivating the CPU slab.
If multiple operations race the right way, this could lead to an object
getting lost; or, in an even more unlikely situation, it could even lead to
an object being freed onto the wrong slab's freelist, messing up the
`inuse` counter and eventually causing a page to be freed to the page
allocator while it still contains slab objects.
(I haven't actually tested these cases though, this is just based on
looking at the code. Writing testcases for this stuff seems like it'd be
a pain...)
The race leading to state inconsistency is (all operations on the same CPU
and kmem_cache):
- task A: begin do_slab_free():
- read TID
- read pcpu freelist (==NULL)
- check `slab == c->slab` (true)
- [PREEMPT A->B]
- task B: begin slab_alloc_node():
- fastpath fails (`c->freelist` is NULL)
- enter __slab_alloc()
- slub_get_cpu_ptr() (disables preemption)
- enter ___slab_alloc()
- take local_lock_irqsave()
- read c->freelist as NULL
- get_freelist() returns NULL
- write `c->slab = NULL`
- drop local_unlock_irqrestore()
- goto new_slab
- slub_percpu_partial() is NULL
- get_partial() returns NULL
- slub_put_cpu_ptr() (enables preemption)
- [PREEMPT B->A]
- task A: finish do_slab_free():
- this_cpu_cmpxchg_double() succeeds()
- [CORRUPT STATE: c->slab==NULL, c->freelist!=NULL]
From there, the object on c->freelist will get lost if task B is allowed to
continue from here: It will proceed to the retry_load_slab label,
set c->slab, then jump to load_freelist, which clobbers c->freelist.
But if we instead continue as follows, we get worse corruption:
- task A: run __slab_free() on object from other struct slab:
- CPU_PARTIAL_FREE case (slab was on no list, is now on pcpu partial)
- task A: run slab_alloc_node() with NUMA node constraint:
- fastpath fails (c->slab is NULL)
- call __slab_alloc()
- slub_get_cpu_ptr() (disables preemption)
- enter ___slab_alloc()
- c->slab is NULL: goto new_slab
- slub_percpu_partial() is non-NULL
- set c->slab to slub_percpu_partial(c)
- [CORRUPT STATE: c->slab points to slab-1, c->freelist has objects
from slab-2]
- goto redo
- node_match() fails
- goto deactivate_slab
- existing c->freelist is passed into deactivate_slab()
- inuse count of slab-1 is decremented to account for object from
slab-2
At this point, the inuse count of slab-1 is 1 lower than it should be.
This means that if we free all allocated objects in slab-1 except for one,
SLUB will think that slab-1 is completely unused, and may free its page,
leading to use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: fix a use-after-free issue in igb_clean_tx_ring
Fix the following use-after-free bug in igb_clean_tx_ring routine when
the NIC is running in XDP mode. The issue can be triggered redirecting
traffic into the igb NIC and then closing the device while the traffic
is flowing.
[ 73.322719] CPU: 1 PID: 487 Comm: xdp_redirect Not tainted 5.18.3-apu2 #9
[ 73.330639] Hardware name: PC Engines APU2/APU2, BIOS 4.0.7 02/28/2017
[ 73.337434] RIP: 0010:refcount_warn_saturate+0xa7/0xf0
[ 73.362283] RSP: 0018:ffffc9000081f798 EFLAGS: 00010282
[ 73.367761] RAX: 0000000000000000 RBX: ffffc90000420f80 RCX: 0000000000000000
[ 73.375200] RDX: ffff88811ad22d00 RSI: ffff88811ad171e0 RDI: ffff88811ad171e0
[ 73.382590] RBP: 0000000000000900 R08: ffffffff82298f28 R09: 0000000000000058
[ 73.390008] R10: 0000000000000219 R11: ffffffff82280f40 R12: 0000000000000090
[ 73.397356] R13: ffff888102343a40 R14: ffff88810359e0e4 R15: 0000000000000000
[ 73.404806] FS: 00007ff38d31d740(0000) GS:ffff88811ad00000(0000) knlGS:0000000000000000
[ 73.413129] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 73.419096] CR2: 000055cff35f13f8 CR3: 0000000106391000 CR4: 00000000000406e0
[ 73.426565] Call Trace:
[ 73.429087] <TASK>
[ 73.431314] igb_clean_tx_ring+0x43/0x140 [igb]
[ 73.436002] igb_down+0x1d7/0x220 [igb]
[ 73.439974] __igb_close+0x3c/0x120 [igb]
[ 73.444118] igb_xdp+0x10c/0x150 [igb]
[ 73.447983] ? igb_pci_sriov_configure+0x70/0x70 [igb]
[ 73.453362] dev_xdp_install+0xda/0x110
[ 73.457371] dev_xdp_attach+0x1da/0x550
[ 73.461369] do_setlink+0xfd0/0x10f0
[ 73.465166] ? __nla_validate_parse+0x89/0xc70
[ 73.469714] rtnl_setlink+0x11a/0x1e0
[ 73.473547] rtnetlink_rcv_msg+0x145/0x3d0
[ 73.477709] ? rtnl_calcit.isra.0+0x130/0x130
[ 73.482258] netlink_rcv_skb+0x8d/0x110
[ 73.486229] netlink_unicast+0x230/0x340
[ 73.490317] netlink_sendmsg+0x215/0x470
[ 73.494395] __sys_sendto+0x179/0x190
[ 73.498268] ? move_addr_to_user+0x37/0x70
[ 73.502547] ? __sys_getsockname+0x84/0xe0
[ 73.506853] ? netlink_setsockopt+0x1c1/0x4a0
[ 73.511349] ? __sys_setsockopt+0xc8/0x1d0
[ 73.515636] __x64_sys_sendto+0x20/0x30
[ 73.519603] do_syscall_64+0x3b/0x80
[ 73.523399] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 73.528712] RIP: 0033:0x7ff38d41f20c
[ 73.551866] RSP: 002b:00007fff3b945a68 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[ 73.559640] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ff38d41f20c
[ 73.567066] RDX: 0000000000000034 RSI: 00007fff3b945b30 RDI: 0000000000000003
[ 73.574457] RBP: 0000000000000003 R08: 0000000000000000 R09: 0000000000000000
[ 73.581852] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff3b945ab0
[ 73.589179] R13: 0000000000000000 R14: 0000000000000003 R15: 00007fff3b945b30
[ 73.596545] </TASK>
[ 73.598842] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix race on unaccepted mptcp sockets
When the listener socket owning the relevant request is closed,
it frees the unaccepted subflows and that causes later deletion
of the paired MPTCP sockets.
The mptcp socket's worker can run in the time interval between such delete
operations. When that happens, any access to msk->first will cause an UaF
access, as the subflow cleanup did not cleared such field in the mptcp
socket.
Address the issue explicitly traversing the listener socket accept
queue at close time and performing the needed cleanup on the pending
msk.
Note that the locking is a bit tricky, as we need to acquire the msk
socket lock, while still owning the subflow socket one. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup: Use separate src/dst nodes when preloading css_sets for migration
Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.
Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:
#1> mkdir -p /sys/fs/cgroup/misc/a/b
#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
#4> PID=$!
#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs
the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.
After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:
1. cgroup_migrate_add_src() is called on B for the leader.
2. cgroup_migrate_add_src() is called on A for the other threads.
3. cgroup_migrate_prepare_dst() is called. It scans the src list.
4. It notices that B wants to migrate to A, so it tries to A to the dst
list but realizes that its ->mg_preload_node is already busy.
5. and then it notices A wants to migrate to A as it's an identity
migration, it culls it by list_del_init()'ing its ->mg_preload_node and
putting references accordingly.
6. The rest of migration takes place with B on the src list but nothing on
the dst list.
This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.
This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.
This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other. |
| In the Linux kernel, the following vulnerability has been resolved:
vlan: fix memory leak in vlan_newlink()
Blamed commit added back a bug I fixed in commit 9bbd917e0bec
("vlan: fix memory leak in vlan_dev_set_egress_priority")
If a memory allocation fails in vlan_changelink() after other allocations
succeeded, we need to call vlan_dev_free_egress_priority()
to free all allocated memory because after a failed ->newlink()
we do not call any methods like ndo_uninit() or dev->priv_destructor().
In following example, if the allocation for last element 2000:2001 fails,
we need to free eight prior allocations:
ip link add link dummy0 dummy0.100 type vlan id 100 \
egress-qos-map 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 2000:2001
syzbot report was:
BUG: memory leak
unreferenced object 0xffff888117bd1060 (size 32):
comm "syz-executor408", pid 3759, jiffies 4294956555 (age 34.090s)
hex dump (first 32 bytes):
09 00 00 00 00 a0 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff83fc60ad>] kmalloc include/linux/slab.h:600 [inline]
[<ffffffff83fc60ad>] vlan_dev_set_egress_priority+0xed/0x170 net/8021q/vlan_dev.c:193
[<ffffffff83fc6628>] vlan_changelink+0x178/0x1d0 net/8021q/vlan_netlink.c:128
[<ffffffff83fc67c8>] vlan_newlink+0x148/0x260 net/8021q/vlan_netlink.c:185
[<ffffffff838b1278>] rtnl_newlink_create net/core/rtnetlink.c:3363 [inline]
[<ffffffff838b1278>] __rtnl_newlink+0xa58/0xdc0 net/core/rtnetlink.c:3580
[<ffffffff838b1629>] rtnl_newlink+0x49/0x70 net/core/rtnetlink.c:3593
[<ffffffff838ac66c>] rtnetlink_rcv_msg+0x21c/0x5c0 net/core/rtnetlink.c:6089
[<ffffffff839f9c37>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2501
[<ffffffff839f8da7>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
[<ffffffff839f8da7>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345
[<ffffffff839f9266>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921
[<ffffffff8384dbf6>] sock_sendmsg_nosec net/socket.c:714 [inline]
[<ffffffff8384dbf6>] sock_sendmsg+0x56/0x80 net/socket.c:734
[<ffffffff8384e15c>] ____sys_sendmsg+0x36c/0x390 net/socket.c:2488
[<ffffffff838523cb>] ___sys_sendmsg+0x8b/0xd0 net/socket.c:2542
[<ffffffff838525b8>] __sys_sendmsg net/socket.c:2571 [inline]
[<ffffffff838525b8>] __do_sys_sendmsg net/socket.c:2580 [inline]
[<ffffffff838525b8>] __se_sys_sendmsg net/socket.c:2578 [inline]
[<ffffffff838525b8>] __x64_sys_sendmsg+0x78/0xf0 net/socket.c:2578
[<ffffffff845ad8d5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff845ad8d5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff8460006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix use after free when disabling sriov
Use after free is detected by kfence when disabling sriov. What was read
after being freed was vf->pci_dev: it was freed from pci_disable_sriov
and later read in efx_ef10_sriov_free_vf_vports, called from
efx_ef10_sriov_free_vf_vswitching.
Set the pointer to NULL at release time to not trying to read it later.
Reproducer and dmesg log (note that kfence doesn't detect it every time):
$ echo 1 > /sys/class/net/enp65s0f0np0/device/sriov_numvfs
$ echo 0 > /sys/class/net/enp65s0f0np0/device/sriov_numvfs
BUG: KFENCE: use-after-free read in efx_ef10_sriov_free_vf_vswitching+0x82/0x170 [sfc]
Use-after-free read at 0x00000000ff3c1ba5 (in kfence-#224):
efx_ef10_sriov_free_vf_vswitching+0x82/0x170 [sfc]
efx_ef10_pci_sriov_disable+0x38/0x70 [sfc]
efx_pci_sriov_configure+0x24/0x40 [sfc]
sriov_numvfs_store+0xfe/0x140
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x11f/0x1b0
vfs_write+0x1eb/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x5c/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
kfence-#224: 0x00000000edb8ef95-0x00000000671f5ce1, size=2792, cache=kmalloc-4k
allocated by task 6771 on cpu 10 at 3137.860196s:
pci_alloc_dev+0x21/0x60
pci_iov_add_virtfn+0x2a2/0x320
sriov_enable+0x212/0x3e0
efx_ef10_sriov_configure+0x67/0x80 [sfc]
efx_pci_sriov_configure+0x24/0x40 [sfc]
sriov_numvfs_store+0xba/0x140
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x11f/0x1b0
vfs_write+0x1eb/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x5c/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
freed by task 6771 on cpu 12 at 3170.991309s:
device_release+0x34/0x90
kobject_cleanup+0x3a/0x130
pci_iov_remove_virtfn+0xd9/0x120
sriov_disable+0x30/0xe0
efx_ef10_pci_sriov_disable+0x57/0x70 [sfc]
efx_pci_sriov_configure+0x24/0x40 [sfc]
sriov_numvfs_store+0xfe/0x140
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x11f/0x1b0
vfs_write+0x1eb/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x5c/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu-v3-sva: Fix mm use-after-free
We currently call arm64_mm_context_put() without holding a reference to
the mm, which can result in use-after-free. Call mmgrab()/mmdrop() to
ensure the mm only gets freed after we unpinned the ASID. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix use-after-free in chanctx code
In ieee80211_vif_use_reserved_context(), when we have an
old context and the new context's replace_state is set to
IEEE80211_CHANCTX_REPLACE_NONE, we free the old context
in ieee80211_vif_use_reserved_reassign(). Therefore, we
cannot check the old_ctx anymore, so we should set it to
NULL after this point.
However, since the new_ctx replace state is clearly not
IEEE80211_CHANCTX_REPLACES_OTHER, we're not going to do
anything else in this function and can just return to
avoid accessing the freed old_ctx. |
| In the Linux kernel, the following vulnerability has been resolved:
bfq: Update cgroup information before merging bio
When the process is migrated to a different cgroup (or in case of
writeback just starts submitting bios associated with a different
cgroup) bfq_merge_bio() can operate with stale cgroup information in
bic. Thus the bio can be merged to a request from a different cgroup or
it can result in merging of bfqqs for different cgroups or bfqqs of
already dead cgroups and causing possible use-after-free issues. Fix the
problem by updating cgroup information in bfq_merge_bio(). |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: don't touch ->tagset in blk_mq_get_sq_hctx
blk_mq_run_hw_queues() could be run when there isn't queued request and
after queue is cleaned up, at that time tagset is freed, because tagset
lifetime is covered by driver, and often freed after blk_cleanup_queue()
returns.
So don't touch ->tagset for figuring out current default hctx by the mapping
built in request queue, so use-after-free on tagset can be avoided. Meantime
this way should be fast than retrieving mapping from tagset. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix potential use-after-free in nfsd_file_put()
nfsd_file_put_noref() can free @nf, so don't dereference @nf
immediately upon return from nfsd_file_put_noref(). |
| In the Linux kernel, the following vulnerability has been resolved:
mt76: fix use-after-free by removing a non-RCU wcid pointer
Fixes an issue caught by KASAN about use-after-free in mt76_txq_schedule
by protecting mtxq->wcid with rcu_lock between mt76_txq_schedule and
sta_info_[alloc, free].
[18853.876689] ==================================================================
[18853.876751] BUG: KASAN: use-after-free in mt76_txq_schedule+0x204/0xaf8 [mt76]
[18853.876773] Read of size 8 at addr ffffffaf989a2138 by task mt76-tx phy0/883
[18853.876786]
[18853.876810] CPU: 5 PID: 883 Comm: mt76-tx phy0 Not tainted 5.10.100-fix-510-56778d365941-kasan #5 0b01fbbcf41a530f52043508fec2e31a4215
[18853.876840] Call trace:
[18853.876861] dump_backtrace+0x0/0x3ec
[18853.876878] show_stack+0x20/0x2c
[18853.876899] dump_stack+0x11c/0x1ac
[18853.876918] print_address_description+0x74/0x514
[18853.876934] kasan_report+0x134/0x174
[18853.876948] __asan_report_load8_noabort+0x44/0x50
[18853.876976] mt76_txq_schedule+0x204/0xaf8 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877002] mt76_txq_schedule_all+0x2c/0x48 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877030] mt7921_tx_worker+0xa0/0x1cc [mt7921_common f0875ebac9d7b4754e1010549e7db50fbd90a047]
[18853.877054] __mt76_worker_fn+0x190/0x22c [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877071] kthread+0x2f8/0x3b8
[18853.877087] ret_from_fork+0x10/0x30
[18853.877098]
[18853.877112] Allocated by task 941:
[18853.877131] kasan_save_stack+0x38/0x68
[18853.877147] __kasan_kmalloc+0xd4/0xfc
[18853.877163] kasan_kmalloc+0x10/0x1c
[18853.877177] __kmalloc+0x264/0x3c4
[18853.877294] sta_info_alloc+0x460/0xf88 [mac80211]
[18853.877410] ieee80211_prep_connection+0x204/0x1ee0 [mac80211]
[18853.877523] ieee80211_mgd_auth+0x6c4/0xa4c [mac80211]
[18853.877635] ieee80211_auth+0x20/0x2c [mac80211]
[18853.877733] rdev_auth+0x7c/0x438 [cfg80211]
[18853.877826] cfg80211_mlme_auth+0x26c/0x390 [cfg80211]
[18853.877919] nl80211_authenticate+0x6d4/0x904 [cfg80211]
[18853.877938] genl_rcv_msg+0x748/0x93c
[18853.877954] netlink_rcv_skb+0x160/0x2a8
[18853.877969] genl_rcv+0x3c/0x54
[18853.877985] netlink_unicast_kernel+0x104/0x1ec
[18853.877999] netlink_unicast+0x178/0x268
[18853.878015] netlink_sendmsg+0x3cc/0x5f0
[18853.878030] sock_sendmsg+0xb4/0xd8
[18853.878043] ____sys_sendmsg+0x2f8/0x53c
[18853.878058] ___sys_sendmsg+0xe8/0x150
[18853.878071] __sys_sendmsg+0xc4/0x1f4
[18853.878087] __arm64_compat_sys_sendmsg+0x88/0x9c
[18853.878101] el0_svc_common+0x1b4/0x390
[18853.878115] do_el0_svc_compat+0x8c/0xdc
[18853.878131] el0_svc_compat+0x10/0x1c
[18853.878146] el0_sync_compat_handler+0xa8/0xcc
[18853.878161] el0_sync_compat+0x188/0x1c0
[18853.878171]
[18853.878183] Freed by task 10927:
[18853.878200] kasan_save_stack+0x38/0x68
[18853.878215] kasan_set_track+0x28/0x3c
[18853.878228] kasan_set_free_info+0x24/0x48
[18853.878244] __kasan_slab_free+0x11c/0x154
[18853.878259] kasan_slab_free+0x14/0x24
[18853.878273] slab_free_freelist_hook+0xac/0x1b0
[18853.878287] kfree+0x104/0x390
[18853.878402] sta_info_free+0x198/0x210 [mac80211]
[18853.878515] __sta_info_destroy_part2+0x230/0x2d4 [mac80211]
[18853.878628] __sta_info_flush+0x300/0x37c [mac80211]
[18853.878740] ieee80211_set_disassoc+0x2cc/0xa7c [mac80211]
[18853.878851] ieee80211_mgd_deauth+0x4a4/0x10a0 [mac80211]
[18853.878962] ieee80211_deauth+0x20/0x2c [mac80211]
[18853.879057] rdev_deauth+0x7c/0x438 [cfg80211]
[18853.879150] cfg80211_mlme_deauth+0x274/0x414 [cfg80211]
[18853.879243] cfg80211_mlme_down+0xe4/0x118 [cfg80211]
[18853.879335] cfg80211_disconnect+0x218/0x2d8 [cfg80211]
[18853.879427] __cfg80211_leave+0x17c/0x240 [cfg80211]
[18853.879519] cfg80211_leave+0x3c/0x58 [cfg80211]
[18853.879611] wiphy_suspend+0xdc/0x200 [cfg80211]
[18853.879628] dpm_run_callback+0x58/0x408
[18853.879642] __device_suspend+0x4cc/0x864
[18853.879658] async_suspend+0x34/0xf4
[18
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: fix reference counting for struct tpm_chip
The following sequence of operations results in a refcount warning:
1. Open device /dev/tpmrm.
2. Remove module tpm_tis_spi.
3. Write a TPM command to the file descriptor opened at step 1.
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1161 at lib/refcount.c:25 kobject_get+0xa0/0xa4
refcount_t: addition on 0; use-after-free.
Modules linked in: tpm_tis_spi tpm_tis_core tpm mdio_bcm_unimac brcmfmac
sha256_generic libsha256 sha256_arm hci_uart btbcm bluetooth cfg80211 vc4
brcmutil ecdh_generic ecc snd_soc_core crc32_arm_ce libaes
raspberrypi_hwmon ac97_bus snd_pcm_dmaengine bcm2711_thermal snd_pcm
snd_timer genet snd phy_generic soundcore [last unloaded: spi_bcm2835]
CPU: 3 PID: 1161 Comm: hold_open Not tainted 5.10.0ls-main-dirty #2
Hardware name: BCM2711
[<c0410c3c>] (unwind_backtrace) from [<c040b580>] (show_stack+0x10/0x14)
[<c040b580>] (show_stack) from [<c1092174>] (dump_stack+0xc4/0xd8)
[<c1092174>] (dump_stack) from [<c0445a30>] (__warn+0x104/0x108)
[<c0445a30>] (__warn) from [<c0445aa8>] (warn_slowpath_fmt+0x74/0xb8)
[<c0445aa8>] (warn_slowpath_fmt) from [<c08435d0>] (kobject_get+0xa0/0xa4)
[<c08435d0>] (kobject_get) from [<bf0a715c>] (tpm_try_get_ops+0x14/0x54 [tpm])
[<bf0a715c>] (tpm_try_get_ops [tpm]) from [<bf0a7d6c>] (tpm_common_write+0x38/0x60 [tpm])
[<bf0a7d6c>] (tpm_common_write [tpm]) from [<c05a7ac0>] (vfs_write+0xc4/0x3c0)
[<c05a7ac0>] (vfs_write) from [<c05a7ee4>] (ksys_write+0x58/0xcc)
[<c05a7ee4>] (ksys_write) from [<c04001a0>] (ret_fast_syscall+0x0/0x4c)
Exception stack(0xc226bfa8 to 0xc226bff0)
bfa0: 00000000 000105b4 00000003 beafe664 00000014 00000000
bfc0: 00000000 000105b4 000103f8 00000004 00000000 00000000 b6f9c000 beafe684
bfe0: 0000006c beafe648 0001056c b6eb6944
---[ end trace d4b8409def9b8b1f ]---
The reason for this warning is the attempt to get the chip->dev reference
in tpm_common_write() although the reference counter is already zero.
Since commit 8979b02aaf1d ("tpm: Fix reference count to main device") the
extra reference used to prevent a premature zero counter is never taken,
because the required TPM_CHIP_FLAG_TPM2 flag is never set.
Fix this by moving the TPM 2 character device handling from
tpm_chip_alloc() to tpm_add_char_device() which is called at a later point
in time when the flag has been set in case of TPM2.
Commit fdc915f7f719 ("tpm: expose spaces via a device link /dev/tpmrm<n>")
already introduced function tpm_devs_release() to release the extra
reference but did not implement the required put on chip->devs that results
in the call of this function.
Fix this by putting chip->devs in tpm_chip_unregister().
Finally move the new implementation for the TPM 2 handling into a new
function to avoid multiple checks for the TPM_CHIP_FLAG_TPM2 flag in the
good case and error cases. |
| In the Linux kernel, the following vulnerability has been resolved:
can: m_can: m_can_tx_handler(): fix use after free of skb
can_put_echo_skb() will clone skb then free the skb. Move the
can_put_echo_skb() for the m_can version 3.0.x directly before the
start of the xmit in hardware, similar to the 3.1.x branch. |
| In the Linux kernel, the following vulnerability has been resolved:
ath11k: free peer for station when disconnect from AP for QCA6390/WCN6855
Commit b4a0f54156ac ("ath11k: move peer delete after vdev stop of station
for QCA6390 and WCN6855") is to fix firmware crash by changing the WMI
command sequence, but actually skip all the peer delete operation, then
it lead commit 58595c9874c6 ("ath11k: Fixing dangling pointer issue upon
peer delete failure") not take effect, and then happened a use-after-free
warning from KASAN. because the peer->sta is not set to NULL and then used
later.
Change to only skip the WMI_PEER_DELETE_CMDID for QCA6390/WCN6855.
log of user-after-free:
[ 534.888665] BUG: KASAN: use-after-free in ath11k_dp_rx_update_peer_stats+0x912/0xc10 [ath11k]
[ 534.888696] Read of size 8 at addr ffff8881396bb1b8 by task rtcwake/2860
[ 534.888705] CPU: 4 PID: 2860 Comm: rtcwake Kdump: loaded Tainted: G W 5.15.0-wt-ath+ #523
[ 534.888712] Hardware name: Intel(R) Client Systems NUC8i7HVK/NUC8i7HVB, BIOS HNKBLi70.86A.0067.2021.0528.1339 05/28/2021
[ 534.888716] Call Trace:
[ 534.888720] <IRQ>
[ 534.888726] dump_stack_lvl+0x57/0x7d
[ 534.888736] print_address_description.constprop.0+0x1f/0x170
[ 534.888745] ? ath11k_dp_rx_update_peer_stats+0x912/0xc10 [ath11k]
[ 534.888771] kasan_report.cold+0x83/0xdf
[ 534.888783] ? ath11k_dp_rx_update_peer_stats+0x912/0xc10 [ath11k]
[ 534.888810] ath11k_dp_rx_update_peer_stats+0x912/0xc10 [ath11k]
[ 534.888840] ath11k_dp_rx_process_mon_status+0x529/0xa70 [ath11k]
[ 534.888874] ? ath11k_dp_rx_mon_status_bufs_replenish+0x3f0/0x3f0 [ath11k]
[ 534.888897] ? check_prev_add+0x20f0/0x20f0
[ 534.888922] ? __lock_acquire+0xb72/0x1870
[ 534.888937] ? find_held_lock+0x33/0x110
[ 534.888954] ath11k_dp_rx_process_mon_rings+0x297/0x520 [ath11k]
[ 534.888981] ? rcu_read_unlock+0x40/0x40
[ 534.888990] ? ath11k_dp_rx_pdev_alloc+0xd90/0xd90 [ath11k]
[ 534.889026] ath11k_dp_service_mon_ring+0x67/0xe0 [ath11k]
[ 534.889053] ? ath11k_dp_rx_process_mon_rings+0x520/0x520 [ath11k]
[ 534.889075] call_timer_fn+0x167/0x4a0
[ 534.889084] ? add_timer_on+0x3b0/0x3b0
[ 534.889103] ? lockdep_hardirqs_on_prepare.part.0+0x18c/0x370
[ 534.889117] __run_timers.part.0+0x539/0x8b0
[ 534.889123] ? ath11k_dp_rx_process_mon_rings+0x520/0x520 [ath11k]
[ 534.889157] ? call_timer_fn+0x4a0/0x4a0
[ 534.889164] ? mark_lock_irq+0x1c30/0x1c30
[ 534.889173] ? clockevents_program_event+0xdd/0x280
[ 534.889189] ? mark_held_locks+0xa5/0xe0
[ 534.889203] run_timer_softirq+0x97/0x180
[ 534.889213] __do_softirq+0x276/0x86a
[ 534.889230] __irq_exit_rcu+0x11c/0x180
[ 534.889238] irq_exit_rcu+0x5/0x20
[ 534.889244] sysvec_apic_timer_interrupt+0x8e/0xc0
[ 534.889251] </IRQ>
[ 534.889254] <TASK>
[ 534.889259] asm_sysvec_apic_timer_interrupt+0x12/0x20
[ 534.889265] RIP: 0010:_raw_spin_unlock_irqrestore+0x38/0x70
[ 534.889271] Code: 74 24 10 e8 ea c2 bf fd 48 89 ef e8 12 53 c0 fd 81 e3 00 02 00 00 75 25 9c 58 f6 c4 02 75 2d 48 85 db 74 01 fb bf 01 00 00 00 <e8> 13 a7 b5 fd 65 8b 05 cc d9 9c 5e 85 c0 74 0a 5b 5d c3 e8 a0 ee
[ 534.889276] RSP: 0018:ffffc90002e5f880 EFLAGS: 00000206
[ 534.889284] RAX: 0000000000000006 RBX: 0000000000000200 RCX: ffffffff9f256f10
[ 534.889289] RDX: 0000000000000000 RSI: ffffffffa1c6e420 RDI: 0000000000000001
[ 534.889293] RBP: ffff8881095e6200 R08: 0000000000000001 R09: ffffffffa40d2b8f
[ 534.889298] R10: fffffbfff481a571 R11: 0000000000000001 R12: ffff8881095e6e68
[ 534.889302] R13: ffffc90002e5f908 R14: 0000000000000246 R15: 0000000000000000
[ 534.889316] ? mark_lock+0xd0/0x14a0
[ 534.889332] klist_next+0x1d4/0x450
[ 534.889340] ? dpm_wait_for_subordinate+0x2d0/0x2d0
[ 534.889350] device_for_each_child+0xa8/0x140
[ 534.889360] ? device_remove_class_symlinks+0x1b0/0x1b0
[ 534.889370] ? __lock_release+0x4bd/0x9f0
[ 534.889378] ? dpm_suspend+0x26b/0x3f0
[ 534.889390] dpm_wait_for_subordinate+
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix UAF due to race between btf_try_get_module and load_module
While working on code to populate kfunc BTF ID sets for module BTF from
its initcall, I noticed that by the time the initcall is invoked, the
module BTF can already be seen by userspace (and the BPF verifier). The
existing btf_try_get_module calls try_module_get which only fails if
mod->state == MODULE_STATE_GOING, i.e. it can increment module reference
when module initcall is happening in parallel.
Currently, BTF parsing happens from MODULE_STATE_COMING notifier
callback. At this point, the module initcalls have not been invoked.
The notifier callback parses and prepares the module BTF, allocates an
ID, which publishes it to userspace, and then adds it to the btf_modules
list allowing the kernel to invoke btf_try_get_module for the BTF.
However, at this point, the module has not been fully initialized (i.e.
its initcalls have not finished). The code in module.c can still fail
and free the module, without caring for other users. However, nothing
stops btf_try_get_module from succeeding between the state transition
from MODULE_STATE_COMING to MODULE_STATE_LIVE.
This leads to a use-after-free issue when BPF program loads
successfully in the state transition, load_module's do_init_module call
fails and frees the module, and BPF program fd on close calls module_put
for the freed module. Future patch has test case to verify we don't
regress in this area in future.
There are multiple points after prepare_coming_module (in load_module)
where failure can occur and module loading can return error. We
illustrate and test for the race using the last point where it can
practically occur (in module __init function).
An illustration of the race:
CPU 0 CPU 1
load_module
notifier_call(MODULE_STATE_COMING)
btf_parse_module
btf_alloc_id // Published to userspace
list_add(&btf_mod->list, btf_modules)
mod->init(...)
... ^
bpf_check |
check_pseudo_btf_id |
btf_try_get_module |
returns true | ...
... | module __init in progress
return prog_fd | ...
... V
if (ret < 0)
free_module(mod)
...
close(prog_fd)
...
bpf_prog_free_deferred
module_put(used_btf.mod) // use-after-free
We fix this issue by setting a flag BTF_MODULE_F_LIVE, from the notifier
callback when MODULE_STATE_LIVE state is reached for the module, so that
we return NULL from btf_try_get_module for modules that are not fully
formed. Since try_module_get already checks that module is not in
MODULE_STATE_GOING state, and that is the only transition a live module
can make before being removed from btf_modules list, this is enough to
close the race and prevent the bug.
A later selftest patch crafts the race condition artifically to verify
that it has been fixed, and that verifier fails to load program (with
ENXIO).
Lastly, a couple of comments:
1. Even if this race didn't exist, it seems more appropriate to only
access resources (ksyms and kfuncs) of a fully formed module which
has been initialized completely.
2. This patch was born out of need for synchronization against module
initcall for the next patch, so it is needed for correctness even
without the aforementioned race condition. The BTF resources
initialized by module initcall are set up once and then only looked
up, so just waiting until the initcall has finished ensures correct
behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/port: Hold port reference until decoder release
KASAN + DEBUG_KOBJECT_RELEASE reports a potential use-after-free in
cxl_decoder_release() where it goes to reference its parent, a cxl_port,
to free its id back to port->decoder_ida.
BUG: KASAN: use-after-free in to_cxl_port+0x18/0x90 [cxl_core]
Read of size 8 at addr ffff888119270908 by task kworker/35:2/379
CPU: 35 PID: 379 Comm: kworker/35:2 Tainted: G OE 5.17.0-rc2+ #198
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Workqueue: events kobject_delayed_cleanup
Call Trace:
<TASK>
dump_stack_lvl+0x59/0x73
print_address_description.constprop.0+0x1f/0x150
? to_cxl_port+0x18/0x90 [cxl_core]
kasan_report.cold+0x83/0xdf
? to_cxl_port+0x18/0x90 [cxl_core]
to_cxl_port+0x18/0x90 [cxl_core]
cxl_decoder_release+0x2a/0x60 [cxl_core]
device_release+0x5f/0x100
kobject_cleanup+0x80/0x1c0
The device core only guarantees parent lifetime until all children are
unregistered. If a child needs a parent to complete its ->release()
callback that child needs to hold a reference to extend the lifetime of
the parent. |
| In the Linux kernel, the following vulnerability has been resolved:
block, bfq: don't move oom_bfqq
Our test report a UAF:
[ 2073.019181] ==================================================================
[ 2073.019188] BUG: KASAN: use-after-free in __bfq_put_async_bfqq+0xa0/0x168
[ 2073.019191] Write of size 8 at addr ffff8000ccf64128 by task rmmod/72584
[ 2073.019192]
[ 2073.019196] CPU: 0 PID: 72584 Comm: rmmod Kdump: loaded Not tainted 4.19.90-yk #5
[ 2073.019198] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
[ 2073.019200] Call trace:
[ 2073.019203] dump_backtrace+0x0/0x310
[ 2073.019206] show_stack+0x28/0x38
[ 2073.019210] dump_stack+0xec/0x15c
[ 2073.019216] print_address_description+0x68/0x2d0
[ 2073.019220] kasan_report+0x238/0x2f0
[ 2073.019224] __asan_store8+0x88/0xb0
[ 2073.019229] __bfq_put_async_bfqq+0xa0/0x168
[ 2073.019233] bfq_put_async_queues+0xbc/0x208
[ 2073.019236] bfq_pd_offline+0x178/0x238
[ 2073.019240] blkcg_deactivate_policy+0x1f0/0x420
[ 2073.019244] bfq_exit_queue+0x128/0x178
[ 2073.019249] blk_mq_exit_sched+0x12c/0x160
[ 2073.019252] elevator_exit+0xc8/0xd0
[ 2073.019256] blk_exit_queue+0x50/0x88
[ 2073.019259] blk_cleanup_queue+0x228/0x3d8
[ 2073.019267] null_del_dev+0xfc/0x1e0 [null_blk]
[ 2073.019274] null_exit+0x90/0x114 [null_blk]
[ 2073.019278] __arm64_sys_delete_module+0x358/0x5a0
[ 2073.019282] el0_svc_common+0xc8/0x320
[ 2073.019287] el0_svc_handler+0xf8/0x160
[ 2073.019290] el0_svc+0x10/0x218
[ 2073.019291]
[ 2073.019294] Allocated by task 14163:
[ 2073.019301] kasan_kmalloc+0xe0/0x190
[ 2073.019305] kmem_cache_alloc_node_trace+0x1cc/0x418
[ 2073.019308] bfq_pd_alloc+0x54/0x118
[ 2073.019313] blkcg_activate_policy+0x250/0x460
[ 2073.019317] bfq_create_group_hierarchy+0x38/0x110
[ 2073.019321] bfq_init_queue+0x6d0/0x948
[ 2073.019325] blk_mq_init_sched+0x1d8/0x390
[ 2073.019330] elevator_switch_mq+0x88/0x170
[ 2073.019334] elevator_switch+0x140/0x270
[ 2073.019338] elv_iosched_store+0x1a4/0x2a0
[ 2073.019342] queue_attr_store+0x90/0xe0
[ 2073.019348] sysfs_kf_write+0xa8/0xe8
[ 2073.019351] kernfs_fop_write+0x1f8/0x378
[ 2073.019359] __vfs_write+0xe0/0x360
[ 2073.019363] vfs_write+0xf0/0x270
[ 2073.019367] ksys_write+0xdc/0x1b8
[ 2073.019371] __arm64_sys_write+0x50/0x60
[ 2073.019375] el0_svc_common+0xc8/0x320
[ 2073.019380] el0_svc_handler+0xf8/0x160
[ 2073.019383] el0_svc+0x10/0x218
[ 2073.019385]
[ 2073.019387] Freed by task 72584:
[ 2073.019391] __kasan_slab_free+0x120/0x228
[ 2073.019394] kasan_slab_free+0x10/0x18
[ 2073.019397] kfree+0x94/0x368
[ 2073.019400] bfqg_put+0x64/0xb0
[ 2073.019404] bfqg_and_blkg_put+0x90/0xb0
[ 2073.019408] bfq_put_queue+0x220/0x228
[ 2073.019413] __bfq_put_async_bfqq+0x98/0x168
[ 2073.019416] bfq_put_async_queues+0xbc/0x208
[ 2073.019420] bfq_pd_offline+0x178/0x238
[ 2073.019424] blkcg_deactivate_policy+0x1f0/0x420
[ 2073.019429] bfq_exit_queue+0x128/0x178
[ 2073.019433] blk_mq_exit_sched+0x12c/0x160
[ 2073.019437] elevator_exit+0xc8/0xd0
[ 2073.019440] blk_exit_queue+0x50/0x88
[ 2073.019443] blk_cleanup_queue+0x228/0x3d8
[ 2073.019451] null_del_dev+0xfc/0x1e0 [null_blk]
[ 2073.019459] null_exit+0x90/0x114 [null_blk]
[ 2073.019462] __arm64_sys_delete_module+0x358/0x5a0
[ 2073.019467] el0_svc_common+0xc8/0x320
[ 2073.019471] el0_svc_handler+0xf8/0x160
[ 2073.019474] el0_svc+0x10/0x218
[ 2073.019475]
[ 2073.019479] The buggy address belongs to the object at ffff8000ccf63f00
which belongs to the cache kmalloc-1024 of size 1024
[ 2073.019484] The buggy address is located 552 bytes inside of
1024-byte region [ffff8000ccf63f00, ffff8000ccf64300)
[ 2073.019486] The buggy address belongs to the page:
[ 2073.019492] page:ffff7e000333d800 count:1 mapcount:0 mapping:ffff8000c0003a00 index:0x0 compound_mapcount: 0
[ 2073.020123] flags: 0x7ffff0000008100(slab|head)
[ 2073.020403] raw: 07ffff0000008100 ffff7e0003334c08 ffff7e00001f5a08 ffff8000c0003a00
[ 2073.020409] ra
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Fix queuing commands when HCI_UNREGISTER is set
hci_cmd_sync_queue shall return an error if HCI_UNREGISTER flag has
been set as that means hci_unregister_dev has been called so it will
likely cause a uaf after the timeout as the hdev will be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
skbuff: fix coalescing for page_pool fragment recycling
Fix a use-after-free when using page_pool with page fragments. We
encountered this problem during normal RX in the hns3 driver:
(1) Initially we have three descriptors in the RX queue. The first one
allocates PAGE1 through page_pool, and the other two allocate one
half of PAGE2 each. Page references look like this:
RX_BD1 _______ PAGE1
RX_BD2 _______ PAGE2
RX_BD3 _________/
(2) Handle RX on the first descriptor. Allocate SKB1, eventually added
to the receive queue by tcp_queue_rcv().
(3) Handle RX on the second descriptor. Allocate SKB2 and pass it to
netif_receive_skb():
netif_receive_skb(SKB2)
ip_rcv(SKB2)
SKB3 = skb_clone(SKB2)
SKB2 and SKB3 share a reference to PAGE2 through
skb_shinfo()->dataref. The other ref to PAGE2 is still held by
RX_BD3:
SKB2 ---+- PAGE2
SKB3 __/ /
RX_BD3 _________/
(3b) Now while handling TCP, coalesce SKB3 with SKB1:
tcp_v4_rcv(SKB3)
tcp_try_coalesce(to=SKB1, from=SKB3) // succeeds
kfree_skb_partial(SKB3)
skb_release_data(SKB3) // drops one dataref
SKB1 _____ PAGE1
\____
SKB2 _____ PAGE2
/
RX_BD3 _________/
In skb_try_coalesce(), __skb_frag_ref() takes a page reference to
PAGE2, where it should instead have increased the page_pool frag
reference, pp_frag_count. Without coalescing, when releasing both
SKB2 and SKB3, a single reference to PAGE2 would be dropped. Now
when releasing SKB1 and SKB2, two references to PAGE2 will be
dropped, resulting in underflow.
(3c) Drop SKB2:
af_packet_rcv(SKB2)
consume_skb(SKB2)
skb_release_data(SKB2) // drops second dataref
page_pool_return_skb_page(PAGE2) // drops one pp_frag_count
SKB1 _____ PAGE1
\____
PAGE2
/
RX_BD3 _________/
(4) Userspace calls recvmsg()
Copies SKB1 and releases it. Since SKB3 was coalesced with SKB1, we
release the SKB3 page as well:
tcp_eat_recv_skb(SKB1)
skb_release_data(SKB1)
page_pool_return_skb_page(PAGE1)
page_pool_return_skb_page(PAGE2) // drops second pp_frag_count
(5) PAGE2 is freed, but the third RX descriptor was still using it!
In our case this causes IOMMU faults, but it would silently corrupt
memory if the IOMMU was disabled.
Change the logic that checks whether pp_recycle SKBs can be coalesced.
We still reject differing pp_recycle between 'from' and 'to' SKBs, but
in order to avoid the situation described above, we also reject
coalescing when both 'from' and 'to' are pp_recycled and 'from' is
cloned.
The new logic allows coalescing a cloned pp_recycle SKB into a page
refcounted one, because in this case the release (4) will drop the right
reference, the one taken by skb_try_coalesce(). |