Search Results (1228 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-62783 2 Inventorygui, Phoenix616 2 Inventorygui, Inventorygui 2025-11-03 5 Medium
InventoryGui is a library for creating chest GUIs for Bukkit/Spigot plugins. Versions 1.6.1-SNAPSHOT and earlier contain a vulnerability where any plugin using the `GuiStorageElement can allow item duplication when the experimental Bundle item feature is enabled on the server. The vulnerability is resolved in version 1.6.2-SNAPSHOT.
CVE-2025-29918 1 Oisf 1 Suricata 2025-11-03 6.2 Medium
Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. A PCRE rule can be written that leads to an infinite loop when negated PCRE is used. Packet processing thread becomes stuck in infinite loop limiting visibility and availability in inline mode. This vulnerability is fixed in 7.0.9.
CVE-2025-22014 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pdr: Fix the potential deadlock When some client process A call pdr_add_lookup() to add the look up for the service and does schedule locator work, later a process B got a new server packet indicating locator is up and call pdr_locator_new_server() which eventually sets pdr->locator_init_complete to true which process A sees and takes list lock and queries domain list but it will timeout due to deadlock as the response will queued to the same qmi->wq and it is ordered workqueue and process B is not able to complete new server request work due to deadlock on list lock. Fix it by removing the unnecessary list iteration as the list iteration is already being done inside locator work, so avoid it here and just call schedule_work() here. Process A Process B process_scheduled_works() pdr_add_lookup() qmi_data_ready_work() process_scheduled_works() pdr_locator_new_server() pdr->locator_init_complete=true; pdr_locator_work() mutex_lock(&pdr->list_lock); pdr_locate_service() mutex_lock(&pdr->list_lock); pdr_get_domain_list() pr_err("PDR: %s get domain list txn wait failed: %d\n", req->service_name, ret); Timeout error log due to deadlock: " PDR: tms/servreg get domain list txn wait failed: -110 PDR: service lookup for msm/adsp/sensor_pd:tms/servreg failed: -110 " Thanks to Bjorn and Johan for letting me know that this commit also fixes an audio regression when using the in-kernel pd-mapper as that makes it easier to hit this race. [1]
CVE-2025-21986 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: switchdev: Convert blocking notification chain to a raw one A blocking notification chain uses a read-write semaphore to protect the integrity of the chain. The semaphore is acquired for writing when adding / removing notifiers to / from the chain and acquired for reading when traversing the chain and informing notifiers about an event. In case of the blocking switchdev notification chain, recursive notifications are possible which leads to the semaphore being acquired twice for reading and to lockdep warnings being generated [1]. Specifically, this can happen when the bridge driver processes a SWITCHDEV_BRPORT_UNOFFLOADED event which causes it to emit notifications about deferred events when calling switchdev_deferred_process(). Fix this by converting the notification chain to a raw notification chain in a similar fashion to the netdev notification chain. Protect the chain using the RTNL mutex by acquiring it when modifying the chain. Events are always informed under the RTNL mutex, but add an assertion in call_switchdev_blocking_notifiers() to make sure this is not violated in the future. Maintain the "blocking" prefix as events are always emitted from process context and listeners are allowed to block. [1]: WARNING: possible recursive locking detected 6.14.0-rc4-custom-g079270089484 #1 Not tainted -------------------------------------------- ip/52731 is trying to acquire lock: ffffffff850918d8 ((switchdev_blocking_notif_chain).rwsem){++++}-{4:4}, at: blocking_notifier_call_chain+0x58/0xa0 but task is already holding lock: ffffffff850918d8 ((switchdev_blocking_notif_chain).rwsem){++++}-{4:4}, at: blocking_notifier_call_chain+0x58/0xa0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock((switchdev_blocking_notif_chain).rwsem); lock((switchdev_blocking_notif_chain).rwsem); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by ip/52731: #0: ffffffff84f795b0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_newlink+0x727/0x1dc0 #1: ffffffff8731f628 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_newlink+0x790/0x1dc0 #2: ffffffff850918d8 ((switchdev_blocking_notif_chain).rwsem){++++}-{4:4}, at: blocking_notifier_call_chain+0x58/0xa0 stack backtrace: ... ? __pfx_down_read+0x10/0x10 ? __pfx_mark_lock+0x10/0x10 ? __pfx_switchdev_port_attr_set_deferred+0x10/0x10 blocking_notifier_call_chain+0x58/0xa0 switchdev_port_attr_notify.constprop.0+0xb3/0x1b0 ? __pfx_switchdev_port_attr_notify.constprop.0+0x10/0x10 ? mark_held_locks+0x94/0xe0 ? switchdev_deferred_process+0x11a/0x340 switchdev_port_attr_set_deferred+0x27/0xd0 switchdev_deferred_process+0x164/0x340 br_switchdev_port_unoffload+0xc8/0x100 [bridge] br_switchdev_blocking_event+0x29f/0x580 [bridge] notifier_call_chain+0xa2/0x440 blocking_notifier_call_chain+0x6e/0xa0 switchdev_bridge_port_unoffload+0xde/0x1a0 ...
CVE-2025-21971 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net_sched: Prevent creation of classes with TC_H_ROOT The function qdisc_tree_reduce_backlog() uses TC_H_ROOT as a termination condition when traversing up the qdisc tree to update parent backlog counters. However, if a class is created with classid TC_H_ROOT, the traversal terminates prematurely at this class instead of reaching the actual root qdisc, causing parent statistics to be incorrectly maintained. In case of DRR, this could lead to a crash as reported by Mingi Cho. Prevent the creation of any Qdisc class with classid TC_H_ROOT (0xFFFFFFFF) across all qdisc types, as suggested by Jamal.
CVE-2025-21871 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tee: optee: Fix supplicant wait loop OP-TEE supplicant is a user-space daemon and it's possible for it be hung or crashed or killed in the middle of processing an OP-TEE RPC call. It becomes more complicated when there is incorrect shutdown ordering of the supplicant process vs the OP-TEE client application which can eventually lead to system hang-up waiting for the closure of the client application. Allow the client process waiting in kernel for supplicant response to be killed rather than indefinitely waiting in an unkillable state. Also, a normal uninterruptible wait should not have resulted in the hung-task watchdog getting triggered, but the endless loop would. This fixes issues observed during system reboot/shutdown when supplicant got hung for some reason or gets crashed/killed which lead to client getting hung in an unkillable state. It in turn lead to system being in hung up state requiring hard power off/on to recover.
CVE-2025-21853 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: avoid holding freeze_mutex during mmap operation We use map->freeze_mutex to prevent races between map_freeze() and memory mapping BPF map contents with writable permissions. The way we naively do this means we'll hold freeze_mutex for entire duration of all the mm and VMA manipulations, which is completely unnecessary. This can potentially also lead to deadlocks, as reported by syzbot in [0]. So, instead, hold freeze_mutex only during writeability checks, bump (proactively) "write active" count for the map, unlock the mutex and proceed with mmap logic. And only if something went wrong during mmap logic, then undo that "write active" counter increment. [0] https://lore.kernel.org/bpf/678dcbc9.050a0220.303755.0066.GAE@google.com/
CVE-2024-26767 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fixed integer types and null check locations [why]: issues fixed: - comparison with wider integer type in loop condition which can cause infinite loops - pointer dereference before null check
CVE-2023-0437 1 Mongodb 1 C Driver 2025-11-03 5.3 Medium
When calling bson_utf8_validate on some inputs a loop with an exit condition that cannot be reached may occur, i.e. an infinite loop. This issue affects All MongoDB C Driver versions prior to versions 1.25.0.
CVE-2020-36023 1 Freedesktop 1 Poppler 2025-11-03 6.5 Medium
An issue was discovered in freedesktop poppler version 20.12.1, allows remote attackers to cause a denial of service (DoS) via crafted .pdf file to FoFiType1C::cvtGlyph function.
CVE-2025-59463 1 Sick 2 Tloc100-100, Tloc100-100 Firmware 2025-11-03 4.3 Medium
An attacker may cause chunk-size mismatches that block file transfers and prevent subsequent transfers.
CVE-2021-46987 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock when cloning inline extents and using qgroups There are a few exceptional cases where cloning an inline extent needs to copy the inline extent data into a page of the destination inode. When this happens, we end up starting a transaction while having a dirty page for the destination inode and while having the range locked in the destination's inode iotree too. Because when reserving metadata space for a transaction we may need to flush existing delalloc in case there is not enough free space, we have a mechanism in place to prevent a deadlock, which was introduced in commit 3d45f221ce627d ("btrfs: fix deadlock when cloning inline extent and low on free metadata space"). However when using qgroups, a transaction also reserves metadata qgroup space, which can also result in flushing delalloc in case there is not enough available space at the moment. When this happens we deadlock, since flushing delalloc requires locking the file range in the inode's iotree and the range was already locked at the very beginning of the clone operation, before attempting to start the transaction. When this issue happens, stack traces like the following are reported: [72747.556262] task:kworker/u81:9 state:D stack: 0 pid: 225 ppid: 2 flags:0x00004000 [72747.556268] Workqueue: writeback wb_workfn (flush-btrfs-1142) [72747.556271] Call Trace: [72747.556273] __schedule+0x296/0x760 [72747.556277] schedule+0x3c/0xa0 [72747.556279] io_schedule+0x12/0x40 [72747.556284] __lock_page+0x13c/0x280 [72747.556287] ? generic_file_readonly_mmap+0x70/0x70 [72747.556325] extent_write_cache_pages+0x22a/0x440 [btrfs] [72747.556331] ? __set_page_dirty_nobuffers+0xe7/0x160 [72747.556358] ? set_extent_buffer_dirty+0x5e/0x80 [btrfs] [72747.556362] ? update_group_capacity+0x25/0x210 [72747.556366] ? cpumask_next_and+0x1a/0x20 [72747.556391] extent_writepages+0x44/0xa0 [btrfs] [72747.556394] do_writepages+0x41/0xd0 [72747.556398] __writeback_single_inode+0x39/0x2a0 [72747.556403] writeback_sb_inodes+0x1ea/0x440 [72747.556407] __writeback_inodes_wb+0x5f/0xc0 [72747.556410] wb_writeback+0x235/0x2b0 [72747.556414] ? get_nr_inodes+0x35/0x50 [72747.556417] wb_workfn+0x354/0x490 [72747.556420] ? newidle_balance+0x2c5/0x3e0 [72747.556424] process_one_work+0x1aa/0x340 [72747.556426] worker_thread+0x30/0x390 [72747.556429] ? create_worker+0x1a0/0x1a0 [72747.556432] kthread+0x116/0x130 [72747.556435] ? kthread_park+0x80/0x80 [72747.556438] ret_from_fork+0x1f/0x30 [72747.566958] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs] [72747.566961] Call Trace: [72747.566964] __schedule+0x296/0x760 [72747.566968] ? finish_wait+0x80/0x80 [72747.566970] schedule+0x3c/0xa0 [72747.566995] wait_extent_bit.constprop.68+0x13b/0x1c0 [btrfs] [72747.566999] ? finish_wait+0x80/0x80 [72747.567024] lock_extent_bits+0x37/0x90 [btrfs] [72747.567047] btrfs_invalidatepage+0x299/0x2c0 [btrfs] [72747.567051] ? find_get_pages_range_tag+0x2cd/0x380 [72747.567076] __extent_writepage+0x203/0x320 [btrfs] [72747.567102] extent_write_cache_pages+0x2bb/0x440 [btrfs] [72747.567106] ? update_load_avg+0x7e/0x5f0 [72747.567109] ? enqueue_entity+0xf4/0x6f0 [72747.567134] extent_writepages+0x44/0xa0 [btrfs] [72747.567137] ? enqueue_task_fair+0x93/0x6f0 [72747.567140] do_writepages+0x41/0xd0 [72747.567144] __filemap_fdatawrite_range+0xc7/0x100 [72747.567167] btrfs_run_delalloc_work+0x17/0x40 [btrfs] [72747.567195] btrfs_work_helper+0xc2/0x300 [btrfs] [72747.567200] process_one_work+0x1aa/0x340 [72747.567202] worker_thread+0x30/0x390 [72747.567205] ? create_worker+0x1a0/0x1a0 [72747.567208] kthread+0x116/0x130 [72747.567211] ? kthread_park+0x80/0x80 [72747.567214] ret_from_fork+0x1f/0x30 [72747.569686] task:fsstress state:D stack: ---truncated---
CVE-2025-1695 1 F5 1 Nginx Unit 2025-11-03 5.3 Medium
In NGINX Unit before version 1.34.2 with the Java Language Module in use, undisclosed requests can lead to an infinite loop and cause an increase in CPU resource utilization. This vulnerability allows a remote attacker to cause a degradation that can lead to a limited denial-of-service (DoS).  There is no control plane exposure; this is a data plane issue only.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-21942 1 Linux 1 Linux Kernel 2025-10-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix extent range end unlock in cow_file_range() Running generic/751 on the for-next branch often results in a hang like below. They are both stack by locking an extent. This suggests someone forget to unlock an extent. INFO: task kworker/u128:1:12 blocked for more than 323 seconds. Not tainted 6.13.0-BTRFS-ZNS+ #503 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u128:1 state:D stack:0 pid:12 tgid:12 ppid:2 flags:0x00004000 Workqueue: btrfs-fixup btrfs_work_helper [btrfs] Call Trace: <TASK> __schedule+0x534/0xdd0 schedule+0x39/0x140 __lock_extent+0x31b/0x380 [btrfs] ? __pfx_autoremove_wake_function+0x10/0x10 btrfs_writepage_fixup_worker+0xf1/0x3a0 [btrfs] btrfs_work_helper+0xff/0x480 [btrfs] ? lock_release+0x178/0x2c0 process_one_work+0x1ee/0x570 ? srso_return_thunk+0x5/0x5f worker_thread+0x1d1/0x3b0 ? __pfx_worker_thread+0x10/0x10 kthread+0x10b/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> INFO: task kworker/u134:0:184 blocked for more than 323 seconds. Not tainted 6.13.0-BTRFS-ZNS+ #503 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u134:0 state:D stack:0 pid:184 tgid:184 ppid:2 flags:0x00004000 Workqueue: writeback wb_workfn (flush-btrfs-4) Call Trace: <TASK> __schedule+0x534/0xdd0 schedule+0x39/0x140 __lock_extent+0x31b/0x380 [btrfs] ? __pfx_autoremove_wake_function+0x10/0x10 find_lock_delalloc_range+0xdb/0x260 [btrfs] writepage_delalloc+0x12f/0x500 [btrfs] ? srso_return_thunk+0x5/0x5f extent_write_cache_pages+0x232/0x840 [btrfs] btrfs_writepages+0x72/0x130 [btrfs] do_writepages+0xe7/0x260 ? srso_return_thunk+0x5/0x5f ? lock_acquire+0xd2/0x300 ? srso_return_thunk+0x5/0x5f ? find_held_lock+0x2b/0x80 ? wbc_attach_and_unlock_inode.part.0+0x102/0x250 ? wbc_attach_and_unlock_inode.part.0+0x102/0x250 __writeback_single_inode+0x5c/0x4b0 writeback_sb_inodes+0x22d/0x550 __writeback_inodes_wb+0x4c/0xe0 wb_writeback+0x2f6/0x3f0 wb_workfn+0x32a/0x510 process_one_work+0x1ee/0x570 ? srso_return_thunk+0x5/0x5f worker_thread+0x1d1/0x3b0 ? __pfx_worker_thread+0x10/0x10 kthread+0x10b/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> This happens because we have another success path for the zoned mode. When there is no active zone available, btrfs_reserve_extent() returns -EAGAIN. In this case, we have two reactions. (1) If the given range is never allocated, we can only wait for someone to finish a zone, so wait on BTRFS_FS_NEED_ZONE_FINISH bit and retry afterward. (2) Or, if some allocations are already done, we must bail out and let the caller to send IOs for the allocation. This is because these IOs may be necessary to finish a zone. The commit 06f364284794 ("btrfs: do proper folio cleanup when cow_file_range() failed") moved the unlock code from the inside of the loop to the outside. So, previously, the allocated extents are unlocked just after the allocation and so before returning from the function. However, they are no longer unlocked on the case (2) above. That caused the hang issue. Fix the issue by modifying the 'end' to the end of the allocated range. Then, we can exit the loop and the same unlock code can properly handle the case.
CVE-2024-6614 1 Mozilla 2 Firefox, Thunderbird 2025-10-30 4.3 Medium
The frame iterator could get stuck in a loop when encountering certain wasm frames leading to incorrect stack traces. This vulnerability affects Firefox < 128 and Thunderbird < 128.
CVE-2025-2962 2 Zephyrproject, Zephyrproject-rtos 2 Zephyr, Zephyr 2025-10-30 8.2 High
A denial-of-service issue in the dns implemenation could cause an infinite loop.
CVE-2025-10150 1 Softing 2 Smartlink Hw-dp, Smartlink Hw-pn 2025-10-30 N/A
Webserver crash caused by scanning on TCP port 80 in Softing Industrial Automation GmbH gateways and switch.This issue affects smartLink HW-PN: from 1.02 through 1.03 smartLink HW-DP: 1.31
CVE-2022-48635 1 Linux 1 Linux Kernel 2025-10-29 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: fsdax: Fix infinite loop in dax_iomap_rw() I got an infinite loop and a WARNING report when executing a tail command in virtiofs. WARNING: CPU: 10 PID: 964 at fs/iomap/iter.c:34 iomap_iter+0x3a2/0x3d0 Modules linked in: CPU: 10 PID: 964 Comm: tail Not tainted 5.19.0-rc7 Call Trace: <TASK> dax_iomap_rw+0xea/0x620 ? __this_cpu_preempt_check+0x13/0x20 fuse_dax_read_iter+0x47/0x80 fuse_file_read_iter+0xae/0xd0 new_sync_read+0xfe/0x180 ? 0xffffffff81000000 vfs_read+0x14d/0x1a0 ksys_read+0x6d/0xf0 __x64_sys_read+0x1a/0x20 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The tail command will call read() with a count of 0. In this case, iomap_iter() will report this WARNING, and always return 1 which casuing the infinite loop in dax_iomap_rw(). Fixing by checking count whether is 0 in dax_iomap_rw().
CVE-2025-22030 1 Linux 1 Linux Kernel 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead() Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock (through crypto_exit_scomp_ops_async()). On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through crypto_scomp_init_tfm()), and then allocates memory. If the allocation results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex. The above dependencies can cause an ABBA deadlock. For example in the following scenario: (1) Task A running on CPU #1: crypto_alloc_acomp_node() Holds scomp_lock Enters reclaim Reads per_cpu_ptr(pool->acomp_ctx, 1) (2) Task A is descheduled (3) CPU #1 goes offline zswap_cpu_comp_dead(CPU #1) Holds per_cpu_ptr(pool->acomp_ctx, 1)) Calls crypto_free_acomp() Waits for scomp_lock (4) Task A running on CPU #2: Waits for per_cpu_ptr(pool->acomp_ctx, 1) // Read on CPU #1 DEADLOCK Since there is no requirement to call crypto_free_acomp() with the per-CPU acomp_ctx mutex held in zswap_cpu_comp_dead(), move it after the mutex is unlocked. Also move the acomp_request_free() and kfree() calls for consistency and to avoid any potential sublte locking dependencies in the future. With this, only setting acomp_ctx fields to NULL occurs with the mutex held. This is similar to how zswap_cpu_comp_prepare() only initializes acomp_ctx fields with the mutex held, after performing all allocations before holding the mutex. Opportunistically, move the NULL check on acomp_ctx so that it takes place before the mutex dereference.
CVE-2024-20353 1 Cisco 4 Adaptive Security Appliance Software, Asa, Firepower Threat Defense and 1 more 2025-10-28 8.6 High
A vulnerability in the management and VPN web servers for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause the device to reload unexpectedly, resulting in a denial of service (DoS) condition. This vulnerability is due to incomplete error checking when parsing an HTTP header. An attacker could exploit this vulnerability by sending a crafted HTTP request to a targeted web server on a device. A successful exploit could allow the attacker to cause a DoS condition when the device reloads.