| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64: Fix the definition of the fixmap area
At the time being, the fixmap area is defined at the top of
the address space or just below KASAN.
This definition is not valid for PPC64.
For PPC64, use the top of the I/O space.
Because of circular dependencies, it is not possible to include
asm/fixmap.h in asm/book3s/64/pgtable.h , so define a fixed size
AREA at the top of the I/O space for fixmap and ensure during
build that the size is big enough. |
| In the Linux kernel, the following vulnerability has been resolved:
net:emac/emac-mac: Fix a use after free in emac_mac_tx_buf_send
In emac_mac_tx_buf_send, it calls emac_tx_fill_tpd(..,skb,..).
If some error happens in emac_tx_fill_tpd(), the skb will be freed via
dev_kfree_skb(skb) in error branch of emac_tx_fill_tpd().
But the freed skb is still used via skb->len by netdev_sent_queue(,skb->len).
As i observed that emac_tx_fill_tpd() haven't modified the value of skb->len,
thus my patch assigns skb->len to 'len' before the possible free and
use 'len' instead of skb->len later. |
| In the Linux kernel, the following vulnerability has been resolved:
kyber: fix out of bounds access when preempted
__blk_mq_sched_bio_merge() gets the ctx and hctx for the current CPU and
passes the hctx to ->bio_merge(). kyber_bio_merge() then gets the ctx
for the current CPU again and uses that to get the corresponding Kyber
context in the passed hctx. However, the thread may be preempted between
the two calls to blk_mq_get_ctx(), and the ctx returned the second time
may no longer correspond to the passed hctx. This "works" accidentally
most of the time, but it can cause us to read garbage if the second ctx
came from an hctx with more ctx's than the first one (i.e., if
ctx->index_hw[hctx->type] > hctx->nr_ctx).
This manifested as this UBSAN array index out of bounds error reported
by Jakub:
UBSAN: array-index-out-of-bounds in ../kernel/locking/qspinlock.c:130:9
index 13106 is out of range for type 'long unsigned int [128]'
Call Trace:
dump_stack+0xa4/0xe5
ubsan_epilogue+0x5/0x40
__ubsan_handle_out_of_bounds.cold.13+0x2a/0x34
queued_spin_lock_slowpath+0x476/0x480
do_raw_spin_lock+0x1c2/0x1d0
kyber_bio_merge+0x112/0x180
blk_mq_submit_bio+0x1f5/0x1100
submit_bio_noacct+0x7b0/0x870
submit_bio+0xc2/0x3a0
btrfs_map_bio+0x4f0/0x9d0
btrfs_submit_data_bio+0x24e/0x310
submit_one_bio+0x7f/0xb0
submit_extent_page+0xc4/0x440
__extent_writepage_io+0x2b8/0x5e0
__extent_writepage+0x28d/0x6e0
extent_write_cache_pages+0x4d7/0x7a0
extent_writepages+0xa2/0x110
do_writepages+0x8f/0x180
__writeback_single_inode+0x99/0x7f0
writeback_sb_inodes+0x34e/0x790
__writeback_inodes_wb+0x9e/0x120
wb_writeback+0x4d2/0x660
wb_workfn+0x64d/0xa10
process_one_work+0x53a/0xa80
worker_thread+0x69/0x5b0
kthread+0x20b/0x240
ret_from_fork+0x1f/0x30
Only Kyber uses the hctx, so fix it by passing the request_queue to
->bio_merge() instead. BFQ and mq-deadline just use that, and Kyber can
map the queues itself to avoid the mismatch. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-rdma: Fix NULL deref when SEND is completed with error
When running some traffic and taking down the link on peer, a
retry counter exceeded error is received. This leads to
nvmet_rdma_error_comp which tried accessing the cq_context to
obtain the queue. The cq_context is no longer valid after the
fix to use shared CQ mechanism and should be obtained similar
to how it is obtained in other functions from the wc->qp.
[ 905.786331] nvmet_rdma: SEND for CQE 0x00000000e3337f90 failed with status transport retry counter exceeded (12).
[ 905.832048] BUG: unable to handle kernel NULL pointer dereference at 0000000000000048
[ 905.839919] PGD 0 P4D 0
[ 905.842464] Oops: 0000 1 SMP NOPTI
[ 905.846144] CPU: 13 PID: 1557 Comm: kworker/13:1H Kdump: loaded Tainted: G OE --------- - - 4.18.0-304.el8.x86_64 #1
[ 905.872135] RIP: 0010:nvmet_rdma_error_comp+0x5/0x1b [nvmet_rdma]
[ 905.878259] Code: 19 4f c0 e8 89 b3 a5 f6 e9 5b e0 ff ff 0f b7 75 14 4c 89 ea 48 c7 c7 08 1a 4f c0 e8 71 b3 a5 f6 e9 4b e0 ff ff 0f 1f 44 00 00 <48> 8b 47 48 48 85 c0 74 08 48 89 c7 e9 98 bf 49 00 e9 c3 e3 ff ff
[ 905.897135] RSP: 0018:ffffab601c45fe28 EFLAGS: 00010246
[ 905.902387] RAX: 0000000000000065 RBX: ffff9e729ea2f800 RCX: 0000000000000000
[ 905.909558] RDX: 0000000000000000 RSI: ffff9e72df9567c8 RDI: 0000000000000000
[ 905.916731] RBP: ffff9e729ea2b400 R08: 000000000000074d R09: 0000000000000074
[ 905.923903] R10: 0000000000000000 R11: ffffab601c45fcc0 R12: 0000000000000010
[ 905.931074] R13: 0000000000000000 R14: 0000000000000010 R15: ffff9e729ea2f400
[ 905.938247] FS: 0000000000000000(0000) GS:ffff9e72df940000(0000) knlGS:0000000000000000
[ 905.938249] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 905.950067] nvmet_rdma: SEND for CQE 0x00000000c7356cca failed with status transport retry counter exceeded (12).
[ 905.961855] CR2: 0000000000000048 CR3: 000000678d010004 CR4: 00000000007706e0
[ 905.961855] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 905.961856] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 905.961857] PKRU: 55555554
[ 906.010315] Call Trace:
[ 906.012778] __ib_process_cq+0x89/0x170 [ib_core]
[ 906.017509] ib_cq_poll_work+0x26/0x80 [ib_core]
[ 906.022152] process_one_work+0x1a7/0x360
[ 906.026182] ? create_worker+0x1a0/0x1a0
[ 906.030123] worker_thread+0x30/0x390
[ 906.033802] ? create_worker+0x1a0/0x1a0
[ 906.037744] kthread+0x116/0x130
[ 906.040988] ? kthread_flush_work_fn+0x10/0x10
[ 906.045456] ret_from_fork+0x1f/0x40 |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix leaked dentry
Since commit 6815f479ca90 ("ovl: use only uppermetacopy state in
ovl_lookup()"), overlayfs doesn't put temporary dentry when there is a
metacopy error, which leads to dentry leaks when shutting down the related
superblock:
overlayfs: refusing to follow metacopy origin for (/file0)
...
BUG: Dentry (____ptrval____){i=3f33,n=file3} still in use (1) [unmount of overlay overlay]
...
WARNING: CPU: 1 PID: 432 at umount_check.cold+0x107/0x14d
CPU: 1 PID: 432 Comm: unmount-overlay Not tainted 5.12.0-rc5 #1
...
RIP: 0010:umount_check.cold+0x107/0x14d
...
Call Trace:
d_walk+0x28c/0x950
? dentry_lru_isolate+0x2b0/0x2b0
? __kasan_slab_free+0x12/0x20
do_one_tree+0x33/0x60
shrink_dcache_for_umount+0x78/0x1d0
generic_shutdown_super+0x70/0x440
kill_anon_super+0x3e/0x70
deactivate_locked_super+0xc4/0x160
deactivate_super+0xfa/0x140
cleanup_mnt+0x22e/0x370
__cleanup_mnt+0x1a/0x30
task_work_run+0x139/0x210
do_exit+0xb0c/0x2820
? __kasan_check_read+0x1d/0x30
? find_held_lock+0x35/0x160
? lock_release+0x1b6/0x660
? mm_update_next_owner+0xa20/0xa20
? reacquire_held_locks+0x3f0/0x3f0
? __sanitizer_cov_trace_const_cmp4+0x22/0x30
do_group_exit+0x135/0x380
__do_sys_exit_group.isra.0+0x20/0x20
__x64_sys_exit_group+0x3c/0x50
do_syscall_64+0x45/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xae
...
VFS: Busy inodes after unmount of overlay. Self-destruct in 5 seconds. Have a nice day...
This fix has been tested with a syzkaller reproducer. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Return correct error code from smb2_get_enc_key
Avoid a warning if the error percolates back up:
[440700.376476] CIFS VFS: \\otters.example.com crypt_message: Could not get encryption key
[440700.386947] ------------[ cut here ]------------
[440700.386948] err = 1
[440700.386977] WARNING: CPU: 11 PID: 2733 at /build/linux-hwe-5.4-p6lk6L/linux-hwe-5.4-5.4.0/lib/errseq.c:74 errseq_set+0x5c/0x70
...
[440700.397304] CPU: 11 PID: 2733 Comm: tar Tainted: G OE 5.4.0-70-generic #78~18.04.1-Ubuntu
...
[440700.397334] Call Trace:
[440700.397346] __filemap_set_wb_err+0x1a/0x70
[440700.397419] cifs_writepages+0x9c7/0xb30 [cifs]
[440700.397426] do_writepages+0x4b/0xe0
[440700.397444] __filemap_fdatawrite_range+0xcb/0x100
[440700.397455] filemap_write_and_wait+0x42/0xa0
[440700.397486] cifs_setattr+0x68b/0xf30 [cifs]
[440700.397493] notify_change+0x358/0x4a0
[440700.397500] utimes_common+0xe9/0x1c0
[440700.397510] do_utimes+0xc5/0x150
[440700.397520] __x64_sys_utimensat+0x88/0xd0 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Restructure trace_clock_global() to never block
It was reported that a fix to the ring buffer recursion detection would
cause a hung machine when performing suspend / resume testing. The
following backtrace was extracted from debugging that case:
Call Trace:
trace_clock_global+0x91/0xa0
__rb_reserve_next+0x237/0x460
ring_buffer_lock_reserve+0x12a/0x3f0
trace_buffer_lock_reserve+0x10/0x50
__trace_graph_return+0x1f/0x80
trace_graph_return+0xb7/0xf0
? trace_clock_global+0x91/0xa0
ftrace_return_to_handler+0x8b/0xf0
? pv_hash+0xa0/0xa0
return_to_handler+0x15/0x30
? ftrace_graph_caller+0xa0/0xa0
? trace_clock_global+0x91/0xa0
? __rb_reserve_next+0x237/0x460
? ring_buffer_lock_reserve+0x12a/0x3f0
? trace_event_buffer_lock_reserve+0x3c/0x120
? trace_event_buffer_reserve+0x6b/0xc0
? trace_event_raw_event_device_pm_callback_start+0x125/0x2d0
? dpm_run_callback+0x3b/0xc0
? pm_ops_is_empty+0x50/0x50
? platform_get_irq_byname_optional+0x90/0x90
? trace_device_pm_callback_start+0x82/0xd0
? dpm_run_callback+0x49/0xc0
With the following RIP:
RIP: 0010:native_queued_spin_lock_slowpath+0x69/0x200
Since the fix to the recursion detection would allow a single recursion to
happen while tracing, this lead to the trace_clock_global() taking a spin
lock and then trying to take it again:
ring_buffer_lock_reserve() {
trace_clock_global() {
arch_spin_lock() {
queued_spin_lock_slowpath() {
/* lock taken */
(something else gets traced by function graph tracer)
ring_buffer_lock_reserve() {
trace_clock_global() {
arch_spin_lock() {
queued_spin_lock_slowpath() {
/* DEAD LOCK! */
Tracing should *never* block, as it can lead to strange lockups like the
above.
Restructure the trace_clock_global() code to instead of simply taking a
lock to update the recorded "prev_time" simply use it, as two events
happening on two different CPUs that calls this at the same time, really
doesn't matter which one goes first. Use a trylock to grab the lock for
updating the prev_time, and if it fails, simply try again the next time.
If it failed to be taken, that means something else is already updating
it.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212761 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: validate user data in compat ioctl
Wrong user data may cause warning in i2c_transfer(), ex: zero msgs.
Userspace should not be able to trigger warnings, so this patch adds
validation checks for user data in compact ioctl to prevent reported
warnings |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_limit: avoid possible divide error in nft_limit_init
div_u64() divides u64 by u32.
nft_limit_init() wants to divide u64 by u64, use the appropriate
math function (div64_u64)
divide error: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 8390 Comm: syz-executor188 Not tainted 5.12.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:div_u64_rem include/linux/math64.h:28 [inline]
RIP: 0010:div_u64 include/linux/math64.h:127 [inline]
RIP: 0010:nft_limit_init+0x2a2/0x5e0 net/netfilter/nft_limit.c:85
Code: ef 4c 01 eb 41 0f 92 c7 48 89 de e8 38 a5 22 fa 4d 85 ff 0f 85 97 02 00 00 e8 ea 9e 22 fa 4c 0f af f3 45 89 ed 31 d2 4c 89 f0 <49> f7 f5 49 89 c6 e8 d3 9e 22 fa 48 8d 7d 48 48 b8 00 00 00 00 00
RSP: 0018:ffffc90009447198 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000200000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff875152e6 RDI: 0000000000000003
RBP: ffff888020f80908 R08: 0000200000000000 R09: 0000000000000000
R10: ffffffff875152d8 R11: 0000000000000000 R12: ffffc90009447270
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 000000000097a300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c4 CR3: 0000000026a52000 CR4: 00000000001506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
nf_tables_newexpr net/netfilter/nf_tables_api.c:2675 [inline]
nft_expr_init+0x145/0x2d0 net/netfilter/nf_tables_api.c:2713
nft_set_elem_expr_alloc+0x27/0x280 net/netfilter/nf_tables_api.c:5160
nf_tables_newset+0x1997/0x3150 net/netfilter/nf_tables_api.c:4321
nfnetlink_rcv_batch+0x85a/0x21b0 net/netfilter/nfnetlink.c:456
nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:580 [inline]
nfnetlink_rcv+0x3af/0x420 net/netfilter/nfnetlink.c:598
netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline]
netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338
netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927
sock_sendmsg_nosec net/socket.c:654 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:674
____sys_sendmsg+0x6e8/0x810 net/socket.c:2350
___sys_sendmsg+0xf3/0x170 net/socket.c:2404
__sys_sendmsg+0xe5/0x1b0 net/socket.c:2433
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: footbridge: fix PCI interrupt mapping
Since commit 30fdfb929e82 ("PCI: Add a call to pci_assign_irq() in
pci_device_probe()"), the PCI code will call the IRQ mapping function
whenever a PCI driver is probed. If these are marked as __init, this
causes an oops if a PCI driver is loaded or bound after the kernel has
initialised. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hso: fix NULL-deref on disconnect regression
Commit 8a12f8836145 ("net: hso: fix null-ptr-deref during tty device
unregistration") fixed the racy minor allocation reported by syzbot, but
introduced an unconditional NULL-pointer dereference on every disconnect
instead.
Specifically, the serial device table must no longer be accessed after
the minor has been released by hso_serial_tty_unregister(). |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: add sanity tests to TCP_QUEUE_SEQ
Qingyu Li reported a syzkaller bug where the repro
changes RCV SEQ _after_ restoring data in the receive queue.
mprotect(0x4aa000, 12288, PROT_READ) = 0
mmap(0x1ffff000, 4096, PROT_NONE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x1ffff000
mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000
mmap(0x21000000, 4096, PROT_NONE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x21000000
socket(AF_INET6, SOCK_STREAM, IPPROTO_IP) = 3
setsockopt(3, SOL_TCP, TCP_REPAIR, [1], 4) = 0
connect(3, {sa_family=AF_INET6, sin6_port=htons(0), sin6_flowinfo=htonl(0), inet_pton(AF_INET6, "::1", &sin6_addr), sin6_scope_id=0}, 28) = 0
setsockopt(3, SOL_TCP, TCP_REPAIR_QUEUE, [1], 4) = 0
sendmsg(3, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="0x0000000000000003\0\0", iov_len=20}], msg_iovlen=1, msg_controllen=0, msg_flags=0}, 0) = 20
setsockopt(3, SOL_TCP, TCP_REPAIR, [0], 4) = 0
setsockopt(3, SOL_TCP, TCP_QUEUE_SEQ, [128], 4) = 0
recvfrom(3, NULL, 20, 0, NULL, NULL) = -1 ECONNRESET (Connection reset by peer)
syslog shows:
[ 111.205099] TCP recvmsg seq # bug 2: copied 80, seq 0, rcvnxt 80, fl 0
[ 111.207894] WARNING: CPU: 1 PID: 356 at net/ipv4/tcp.c:2343 tcp_recvmsg_locked+0x90e/0x29a0
This should not be allowed. TCP_QUEUE_SEQ should only be used
when queues are empty.
This patch fixes this case, and the tx path as well. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvbdev: Fix memory leak in dvb_media_device_free()
dvb_media_device_free() is leaking memory. Free `dvbdev->adapter->conn`
before setting it to NULL, as documented in include/media/media-device.h:
"The media_entity instance itself must be freed explicitly by the driver
if required." |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: Fix a potential use after free
Free the adap structure only after we are done using it.
This patch just moves the put_device() down a bit to avoid the
use after free.
[wsa: added comment to the code, added Fixes tag] |
| In the Linux kernel, the following vulnerability has been resolved:
netlabel: fix out-of-bounds memory accesses
There are two array out-of-bounds memory accesses, one in
cipso_v4_map_lvl_valid(), the other in netlbl_bitmap_walk(). Both
errors are embarassingly simple, and the fixes are straightforward.
As a FYI for anyone backporting this patch to kernels prior to v4.8,
you'll want to apply the netlbl_bitmap_walk() patch to
cipso_v4_bitmap_walk() as netlbl_bitmap_walk() doesn't exist before
Linux v4.8. |
| The Linux kernel NFSD implementation prior to versions 5.19.17 and 6.0.2 are vulnerable to buffer overflow. NFSD tracks the number of pages held by each NFSD thread by combining the receive and send buffers of a remote procedure call (RPC) into a single array of pages. A client can force the send buffer to shrink by sending an RPC message over TCP with garbage data added at the end of the message. The RPC message with garbage data is still correctly formed according to the specification and is passed forward to handlers. Vulnerable code in NFSD is not expecting the oversized request and writes beyond the allocated buffer space. CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H |
| NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer, where a local user with basic capabilities can cause a null-pointer dereference, which may lead to denial of service. |
| On Linux, Node.js ignores certain environment variables if those may have been set by an unprivileged user while the process is running with elevated privileges with the only exception of CAP_NET_BIND_SERVICE.
Due to a bug in the implementation of this exception, Node.js incorrectly applies this exception even when certain other capabilities have been set.
This allows unprivileged users to inject code that inherits the process's elevated privileges. |
| An issue was discovered in the Linux kernel through 6.0.10. l2cap_config_req in net/bluetooth/l2cap_core.c has an integer wraparound via L2CAP_CONF_REQ packets. |
| An issue was discovered in the Linux kernel through 6.0.9. drivers/media/usb/ttusb-dec/ttusb_dec.c has a memory leak because of the lack of a dvb_frontend_detach call. |