| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: filesystems without casefold feature cannot be mounted with siphash
When mounting the ext4 filesystem, if the default hash version is set to
DX_HASH_SIPHASH but the casefold feature is not set, exit the mounting. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethtool: fix the error condition in ethtool_get_phy_stats_ethtool()
Clang static checker (scan-build) warning:
net/ethtool/ioctl.c:line 2233, column 2
Called function pointer is null (null dereference).
Return '-EOPNOTSUPP' when 'ops->get_ethtool_phy_stats' is NULL to fix
this typo error. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix uninit-value access in __ip_make_skb()
KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb()
tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a
race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL
while __ip_make_skb() is running, the function will access icmphdr in the
skb even if it is not included. This causes the issue reported by KMSAN.
Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL
on the socket.
Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These
are union in struct flowi4 and are implicitly initialized by
flowi4_init_output(), but we should not rely on specific union layout.
Initialize these explicitly in raw_sendmsg().
[1]
BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
__ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
ip_finish_skb include/net/ip.h:243 [inline]
ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508
raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
__ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128
ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365
raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 ("ipv4: Fix uninit-value access in
__ip_make_skb()") for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6->flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-throttle: Set BIO_THROTTLED when bio has been throttled
1.In current process, all bio will set the BIO_THROTTLED flag
after __blk_throtl_bio().
2.If bio needs to be throttled, it will start the timer and
stop submit bio directly. Bio will submit in
blk_throtl_dispatch_work_fn() when the timer expires.But in
the current process, if bio is throttled. The BIO_THROTTLED
will be set to bio after timer start. If the bio has been
completed, it may cause use-after-free blow.
BUG: KASAN: use-after-free in blk_throtl_bio+0x12f0/0x2c70
Read of size 2 at addr ffff88801b8902d4 by task fio/26380
dump_stack+0x9b/0xce
print_address_description.constprop.6+0x3e/0x60
kasan_report.cold.9+0x22/0x3a
blk_throtl_bio+0x12f0/0x2c70
submit_bio_checks+0x701/0x1550
submit_bio_noacct+0x83/0xc80
submit_bio+0xa7/0x330
mpage_readahead+0x380/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Allocated by task 26380:
kasan_save_stack+0x19/0x40
__kasan_kmalloc.constprop.2+0xc1/0xd0
kmem_cache_alloc+0x146/0x440
mempool_alloc+0x125/0x2f0
bio_alloc_bioset+0x353/0x590
mpage_alloc+0x3b/0x240
do_mpage_readpage+0xddf/0x1ef0
mpage_readahead+0x264/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 0:
kasan_save_stack+0x19/0x40
kasan_set_track+0x1c/0x30
kasan_set_free_info+0x1b/0x30
__kasan_slab_free+0x111/0x160
kmem_cache_free+0x94/0x460
mempool_free+0xd6/0x320
bio_free+0xe0/0x130
bio_put+0xab/0xe0
bio_endio+0x3a6/0x5d0
blk_update_request+0x590/0x1370
scsi_end_request+0x7d/0x400
scsi_io_completion+0x1aa/0xe50
scsi_softirq_done+0x11b/0x240
blk_mq_complete_request+0xd4/0x120
scsi_mq_done+0xf0/0x200
virtscsi_vq_done+0xbc/0x150
vring_interrupt+0x179/0x390
__handle_irq_event_percpu+0xf7/0x490
handle_irq_event_percpu+0x7b/0x160
handle_irq_event+0xcc/0x170
handle_edge_irq+0x215/0xb20
common_interrupt+0x60/0x120
asm_common_interrupt+0x1e/0x40
Fix this by move BIO_THROTTLED set into the queue_lock. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: core: use sysfs_emit() instead of sprintf()
sprintf() (still used in the MMC core for the sysfs output) is vulnerable
to the buffer overflow. Use the new-fangled sysfs_emit() instead.
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
sock_map: avoid race between sock_map_close and sk_psock_put
sk_psock_get will return NULL if the refcount of psock has gone to 0, which
will happen when the last call of sk_psock_put is done. However,
sk_psock_drop may not have finished yet, so the close callback will still
point to sock_map_close despite psock being NULL.
This can be reproduced with a thread deleting an element from the sock map,
while the second one creates a socket, adds it to the map and closes it.
That will trigger the WARN_ON_ONCE:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 7220 at net/core/sock_map.c:1701 sock_map_close+0x2a2/0x2d0 net/core/sock_map.c:1701
Modules linked in:
CPU: 1 PID: 7220 Comm: syz-executor380 Not tainted 6.9.0-syzkaller-07726-g3c999d1ae3c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
RIP: 0010:sock_map_close+0x2a2/0x2d0 net/core/sock_map.c:1701
Code: df e8 92 29 88 f8 48 8b 1b 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 79 29 88 f8 4c 8b 23 eb 89 e8 4f 15 23 f8 90 <0f> 0b 90 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d e9 13 26 3d 02
RSP: 0018:ffffc9000441fda8 EFLAGS: 00010293
RAX: ffffffff89731ae1 RBX: ffffffff94b87540 RCX: ffff888029470000
RDX: 0000000000000000 RSI: ffffffff8bcab5c0 RDI: ffffffff8c1faba0
RBP: 0000000000000000 R08: ffffffff92f9b61f R09: 1ffffffff25f36c3
R10: dffffc0000000000 R11: fffffbfff25f36c4 R12: ffffffff89731840
R13: ffff88804b587000 R14: ffff88804b587000 R15: ffffffff89731870
FS: 000055555e080380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000207d4000 CR4: 0000000000350ef0
Call Trace:
<TASK>
unix_release+0x87/0xc0 net/unix/af_unix.c:1048
__sock_release net/socket.c:659 [inline]
sock_close+0xbe/0x240 net/socket.c:1421
__fput+0x42b/0x8a0 fs/file_table.c:422
__do_sys_close fs/open.c:1556 [inline]
__se_sys_close fs/open.c:1541 [inline]
__x64_sys_close+0x7f/0x110 fs/open.c:1541
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fb37d618070
Code: 00 00 48 c7 c2 b8 ff ff ff f7 d8 64 89 02 b8 ff ff ff ff eb d4 e8 10 2c 00 00 80 3d 31 f0 07 00 00 74 17 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 48 c3 0f 1f 80 00 00 00 00 48 83 ec 18 89 7c
RSP: 002b:00007ffcd4a525d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fb37d618070
RDX: 0000000000000010 RSI: 00000000200001c0 RDI: 0000000000000004
RBP: 0000000000000000 R08: 0000000100000000 R09: 0000000100000000
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Use sk_psock, which will only check that the pointer is not been set to
NULL yet, which should only happen after the callbacks are restored. If,
then, a reference can still be gotten, we may call sk_psock_stop and cancel
psock->work.
As suggested by Paolo Abeni, reorder the condition so the control flow is
less convoluted.
After that change, the reproducer does not trigger the WARN_ON_ONCE
anymore. |
| A flaw was found in GIMP. An integer overflow vulnerability exists in the GIMP "Despeckle" plug-in. The issue occurs due to unchecked multiplication of image dimensions, such as width, height, and bytes-per-pixel (img_bpp), which can result in allocating insufficient memory and subsequently performing out-of-bounds writes. This issue could lead to heap corruption, a potential denial of service (DoS), or arbitrary code execution in certain scenarios. |
| A flaw was found in xfig. This vulnerability allows possible code execution via local input manipulation via bezier_spline function. |
| A flaw was found in Libtiff. This vulnerability is a "write-what-where" condition, triggered when the library processes a specially crafted TIFF image file.
By providing an abnormally large image height value in the file's metadata, an attacker can trick the library into writing attacker-controlled color data to an arbitrary memory location. This memory corruption can be exploited to cause a denial of service (application crash) or to achieve arbitrary code execution with the permissions of the user. |
| In MIT Kerberos 5 (aka krb5) before 1.22 (with incremental propagation), there is an integer overflow for a large update size to resize() in kdb_log.c. An authenticated attacker can cause an out-of-bounds write and kadmind daemon crash. |
| A flaw was found in the libssh library in versions less than 0.11.2. An out-of-bounds read can be triggered in the sftp_handle function due to an incorrect comparison check that permits the function to access memory beyond the valid handle list and to return an invalid pointer, which is used in further processing. This vulnerability allows an authenticated remote attacker to potentially read unintended memory regions, exposing sensitive information or affect service behavior. |
| A flaw was found in the libxml2 library. This uncontrolled resource consumption vulnerability occurs when processing XML catalogs that contain repeated <nextCatalog> elements pointing to the same downstream catalog. A remote attacker can exploit this by supplying crafted catalogs, causing the parser to redundantly traverse catalog chains. This leads to excessive CPU consumption and degrades application availability, resulting in a denial-of-service condition. |
| A flaw was identified in the RelaxNG parser of libxml2 related to how external schema inclusions are handled. The parser does not enforce a limit on inclusion depth when resolving nested <include> directives. Specially crafted or overly complex schemas can cause excessive recursion during parsing. This may lead to stack exhaustion and application crashes, creating a denial-of-service risk. |
| A flaw was found in libxml2, an XML parsing library. This uncontrolled recursion vulnerability occurs in the xmlCatalogXMLResolveURI function when an XML catalog contains a delegate URI entry that references itself. A remote attacker could exploit this configuration-dependent issue by providing a specially crafted XML catalog, leading to infinite recursion and call stack exhaustion. This ultimately results in a segmentation fault, causing a Denial of Service (DoS) by crashing affected applications. |
| A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition. |
| A flaw was found in QEMU. If the QIOChannelWebsock object is freed while it is waiting to complete a handshake, a GSource is leaked. This can lead to the callback firing later on and triggering a use-after-free in the use of the channel. This can be abused by a malicious client with network access to the VNC WebSocket port to cause a denial of service during the WebSocket handshake prior to the VNC client authentication. |
| A flaw was found in Podman. In a Containerfile or Podman, data written to RUN --mount=type=bind mounts during the podman build is not discarded. This issue can lead to files created within the container appearing in the temporary build context directory on the host, leaving the created files accessible. |
| A flaw was found in the integration of Active Directory and the System Security Services Daemon (SSSD) on Linux systems. In default configurations, the Kerberos local authentication plugin (sssd_krb5_localauth_plugin) is enabled, but a fallback to the an2ln plugin is possible. This fallback allows an attacker with permission to modify certain AD attributes (such as userPrincipalName or samAccountName) to impersonate privileged users, potentially resulting in unauthorized access or privilege escalation on domain-joined Linux hosts. |
| A Use-After-Free vulnerability has been discovered in GRUB's gettext module. This flaw stems from a programming error where the gettext command remains registered in memory after its module is unloaded. An attacker can exploit this condition by invoking the orphaned command, causing the application to access a memory location that is no longer valid. An attacker could exploit this vulnerability to cause grub to crash, leading to a Denial of Service. Possible data integrity or confidentiality compromise is not discarded. |