In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix inverted genmask check in nft_map_catchall_activate()
nft_map_catchall_activate() has an inverted element activity check
compared to its non-catchall counterpart nft_mapelem_activate() and
compared to what is logically required.
nft_map_catchall_activate() is called from the abort path to re-activate
catchall map elements that were deactivated during a failed transaction.
It should skip elements that are already active (they don't need
re-activation) and process elements that are inactive (they need to be
restored). Instead, the current code does the opposite: it skips inactive
elements and processes active ones.
Compare the non-catchall activate callback, which is correct:
nft_mapelem_activate():
if (nft_set_elem_active(ext, iter->genmask))
return 0; /* skip active, process inactive */
With the buggy catchall version:
nft_map_catchall_activate():
if (!nft_set_elem_active(ext, genmask))
continue; /* skip inactive, process active */
The consequence is that when a DELSET operation is aborted,
nft_setelem_data_activate() is never called for the catchall element.
For NFT_GOTO verdict elements, this means nft_data_hold() is never
called to restore the chain->use reference count. Each abort cycle
permanently decrements chain->use. Once chain->use reaches zero,
DELCHAIN succeeds and frees the chain while catchall verdict elements
still reference it, resulting in a use-after-free.
This is exploitable for local privilege escalation from an unprivileged
user via user namespaces + nftables on distributions that enable
CONFIG_USER_NS and CONFIG_NF_TABLES.
Fix by removing the negation so the check matches nft_mapelem_activate():
skip active elements, process inactive ones.
netfilter: nf_tables: fix inverted genmask check in nft_map_catchall_activate()
nft_map_catchall_activate() has an inverted element activity check
compared to its non-catchall counterpart nft_mapelem_activate() and
compared to what is logically required.
nft_map_catchall_activate() is called from the abort path to re-activate
catchall map elements that were deactivated during a failed transaction.
It should skip elements that are already active (they don't need
re-activation) and process elements that are inactive (they need to be
restored). Instead, the current code does the opposite: it skips inactive
elements and processes active ones.
Compare the non-catchall activate callback, which is correct:
nft_mapelem_activate():
if (nft_set_elem_active(ext, iter->genmask))
return 0; /* skip active, process inactive */
With the buggy catchall version:
nft_map_catchall_activate():
if (!nft_set_elem_active(ext, genmask))
continue; /* skip inactive, process active */
The consequence is that when a DELSET operation is aborted,
nft_setelem_data_activate() is never called for the catchall element.
For NFT_GOTO verdict elements, this means nft_data_hold() is never
called to restore the chain->use reference count. Each abort cycle
permanently decrements chain->use. Once chain->use reaches zero,
DELCHAIN succeeds and frees the chain while catchall verdict elements
still reference it, resulting in a use-after-free.
This is exploitable for local privilege escalation from an unprivileged
user via user namespaces + nftables on distributions that enable
CONFIG_USER_NS and CONFIG_NF_TABLES.
Fix by removing the negation so the check matches nft_mapelem_activate():
skip active elements, process inactive ones.
Metrics
Affected Vendors & Products
Advisories
No advisories yet.
Fixes
Solution
No solution given by the vendor.
Workaround
No workaround given by the vendor.
References
History
Fri, 13 Feb 2026 14:00:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Description | In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix inverted genmask check in nft_map_catchall_activate() nft_map_catchall_activate() has an inverted element activity check compared to its non-catchall counterpart nft_mapelem_activate() and compared to what is logically required. nft_map_catchall_activate() is called from the abort path to re-activate catchall map elements that were deactivated during a failed transaction. It should skip elements that are already active (they don't need re-activation) and process elements that are inactive (they need to be restored). Instead, the current code does the opposite: it skips inactive elements and processes active ones. Compare the non-catchall activate callback, which is correct: nft_mapelem_activate(): if (nft_set_elem_active(ext, iter->genmask)) return 0; /* skip active, process inactive */ With the buggy catchall version: nft_map_catchall_activate(): if (!nft_set_elem_active(ext, genmask)) continue; /* skip inactive, process active */ The consequence is that when a DELSET operation is aborted, nft_setelem_data_activate() is never called for the catchall element. For NFT_GOTO verdict elements, this means nft_data_hold() is never called to restore the chain->use reference count. Each abort cycle permanently decrements chain->use. Once chain->use reaches zero, DELCHAIN succeeds and frees the chain while catchall verdict elements still reference it, resulting in a use-after-free. This is exploitable for local privilege escalation from an unprivileged user via user namespaces + nftables on distributions that enable CONFIG_USER_NS and CONFIG_NF_TABLES. Fix by removing the negation so the check matches nft_mapelem_activate(): skip active elements, process inactive ones. | |
| Title | netfilter: nf_tables: fix inverted genmask check in nft_map_catchall_activate() | |
| First Time appeared |
Linux
Linux linux Kernel |
|
| CPEs | cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | |
| Vendors & Products |
Linux
Linux linux Kernel |
|
| References |
|
|
Projects
Sign in to view the affected projects.
Status: PUBLISHED
Assigner: Linux
Published:
Updated: 2026-02-13T13:29:55.895Z
Reserved: 2026-01-13T15:37:45.968Z
Link: CVE-2026-23111
No data.
Status : Awaiting Analysis
Published: 2026-02-13T14:16:10.283
Modified: 2026-02-13T14:23:48.007
Link: CVE-2026-23111
No data.
OpenCVE Enrichment
No data.
Weaknesses
No weakness.