| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Add TMF to tmr_list handling
An abort that is responded to by iSCSI itself is added to tmr_list but does
not go to target core. A LUN_RESET that goes through tmr_list takes a
refcounter on the abort and waits for completion. However, the abort will
be never complete because it was not started in target core.
Unable to locate ITT: 0x05000000 on CID: 0
Unable to locate RefTaskTag: 0x05000000 on CID: 0.
wait_for_tasks: Stopping tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
wait for tasks: tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
...
INFO: task kworker/0:2:49 blocked for more than 491 seconds.
task:kworker/0:2 state:D stack: 0 pid: 49 ppid: 2 flags:0x00000800
Workqueue: events target_tmr_work [target_core_mod]
Call Trace:
__switch_to+0x2c4/0x470
_schedule+0x314/0x1730
schedule+0x64/0x130
schedule_timeout+0x168/0x430
wait_for_completion+0x140/0x270
target_put_cmd_and_wait+0x64/0xb0 [target_core_mod]
core_tmr_lun_reset+0x30/0xa0 [target_core_mod]
target_tmr_work+0xc8/0x1b0 [target_core_mod]
process_one_work+0x2d4/0x5d0
worker_thread+0x78/0x6c0
To fix this, only add abort to tmr_list if it will be handled by target
core. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/lbr: Filter vsyscall addresses
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):
__insn_get_emulate_prefix()
insn_get_emulate_prefix()
insn_get_prefixes()
insn_get_opcode()
decode_branch_type()
get_branch_type()
intel_pmu_lbr_filter()
intel_pmu_handle_irq()
perf_event_nmi_handler()
Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i)
Within this macro, this dereference occurs:
(insn)->next_byte
Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.
To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/core: Prevent rescheduling when interrupts are disabled
David reported a warning observed while loop testing kexec jump:
Interrupts enabled after irqrouter_resume+0x0/0x50
WARNING: CPU: 0 PID: 560 at drivers/base/syscore.c:103 syscore_resume+0x18a/0x220
kernel_kexec+0xf6/0x180
__do_sys_reboot+0x206/0x250
do_syscall_64+0x95/0x180
The corresponding interrupt flag trace:
hardirqs last enabled at (15573): [<ffffffffa8281b8e>] __up_console_sem+0x7e/0x90
hardirqs last disabled at (15580): [<ffffffffa8281b73>] __up_console_sem+0x63/0x90
That means __up_console_sem() was invoked with interrupts enabled. Further
instrumentation revealed that in the interrupt disabled section of kexec
jump one of the syscore_suspend() callbacks woke up a task, which set the
NEED_RESCHED flag. A later callback in the resume path invoked
cond_resched() which in turn led to the invocation of the scheduler:
__cond_resched+0x21/0x60
down_timeout+0x18/0x60
acpi_os_wait_semaphore+0x4c/0x80
acpi_ut_acquire_mutex+0x3d/0x100
acpi_ns_get_node+0x27/0x60
acpi_ns_evaluate+0x1cb/0x2d0
acpi_rs_set_srs_method_data+0x156/0x190
acpi_pci_link_set+0x11c/0x290
irqrouter_resume+0x54/0x60
syscore_resume+0x6a/0x200
kernel_kexec+0x145/0x1c0
__do_sys_reboot+0xeb/0x240
do_syscall_64+0x95/0x180
This is a long standing problem, which probably got more visible with
the recent printk changes. Something does a task wakeup and the
scheduler sets the NEED_RESCHED flag. cond_resched() sees it set and
invokes schedule() from a completely bogus context. The scheduler
enables interrupts after context switching, which causes the above
warning at the end.
Quite some of the code paths in syscore_suspend()/resume() can result in
triggering a wakeup with the exactly same consequences. They might not
have done so yet, but as they share a lot of code with normal operations
it's just a question of time.
The problem only affects the PREEMPT_NONE and PREEMPT_VOLUNTARY scheduling
models. Full preemption is not affected as cond_resched() is disabled and
the preemption check preemptible() takes the interrupt disabled flag into
account.
Cure the problem by adding a corresponding check into cond_resched(). |
| In the Linux kernel, the following vulnerability has been resolved:
tomoyo: don't emit warning in tomoyo_write_control()
syzbot is reporting too large allocation warning at tomoyo_write_control(),
for one can write a very very long line without new line character. To fix
this warning, I use __GFP_NOWARN rather than checking for KMALLOC_MAX_SIZE,
for practically a valid line should be always shorter than 32KB where the
"too small to fail" memory-allocation rule applies.
One might try to write a valid line that is longer than 32KB, but such
request will likely fail with -ENOMEM. Therefore, I feel that separately
returning -EINVAL when a line is longer than KMALLOC_MAX_SIZE is redundant.
There is no need to distinguish over-32KB and over-KMALLOC_MAX_SIZE. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: handle a symlink read error correctly
Patch series "Convert ocfs2 to use folios".
Mark did a conversion of ocfs2 to use folios and sent it to me as a
giant patch for review ;-)
So I've redone it as individual patches, and credited Mark for the patches
where his code is substantially the same. It's not a bad way to do it;
his patch had some bugs and my patches had some bugs. Hopefully all our
bugs were different from each other. And hopefully Mark likes all the
changes I made to his code!
This patch (of 23):
If we can't read the buffer, be sure to unlock the page before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix mbss changed flags corruption on 32 bit systems
On 32-bit systems, the size of an unsigned long is 4 bytes,
while a u64 is 8 bytes. Therefore, when using
or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE),
the code is incorrectly searching for a bit in a 32-bit
variable that is expected to be 64 bits in size,
leading to incorrect bit finding.
Solution: Ensure that the size of the bits variable is correctly
adjusted for each architecture.
Call Trace:
? show_regs+0x54/0x58
? __warn+0x6b/0xd4
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? report_bug+0x113/0x150
? exc_overflow+0x30/0x30
? handle_bug+0x27/0x44
? exc_invalid_op+0x18/0x50
? handle_exception+0xf6/0xf6
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? ieee80211_mesh_work+0xff/0x260 [mac80211]
? cfg80211_wiphy_work+0x72/0x98 [cfg80211]
? process_one_work+0xf1/0x1fc
? worker_thread+0x2c0/0x3b4
? kthread+0xc7/0xf0
? mod_delayed_work_on+0x4c/0x4c
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork+0x24/0x38
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork_asm+0xf/0x14
? entry_INT80_32+0xf0/0xf0
[restore no-op path for no changes] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: clear link ID from bitmap during link delete after clean up
Currently, during link deletion, the link ID is first removed from the
valid_links bitmap before performing any clean-up operations. However, some
functions require the link ID to remain in the valid_links bitmap. One
such example is cfg80211_cac_event(). The flow is -
nl80211_remove_link()
cfg80211_remove_link()
ieee80211_del_intf_link()
ieee80211_vif_set_links()
ieee80211_vif_update_links()
ieee80211_link_stop()
cfg80211_cac_event()
cfg80211_cac_event() requires link ID to be present but it is cleared
already in cfg80211_remove_link(). Ultimately, WARN_ON() is hit.
Therefore, clear the link ID from the bitmap only after completing the link
clean-up. |
| In the Linux kernel, the following vulnerability has been resolved:
block: RCU protect disk->conv_zones_bitmap
Ensure that a disk revalidation changing the conventional zones bitmap
of a disk does not cause invalid memory references when using the
disk_zone_is_conv() helper by RCU protecting the disk->conv_zones_bitmap
pointer.
disk_zone_is_conv() is modified to operate under the RCU read lock and
the function disk_set_conv_zones_bitmap() is added to update a disk
conv_zones_bitmap pointer using rcu_replace_pointer() with the disk
zone_wplugs_lock spinlock held.
disk_free_zone_resources() is modified to call
disk_update_zone_resources() with a NULL bitmap pointer to free the disk
conv_zones_bitmap. disk_set_conv_zones_bitmap() is also used in
disk_update_zone_resources() to set the new (revalidated) bitmap and
free the old one. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: imx6: Fix suspend/resume support on i.MX6QDL
The suspend/resume functionality is currently broken on the i.MX6QDL
platform, as documented in the NXP errata (ERR005723):
https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
This patch addresses the issue by sharing most of the suspend/resume
sequences used by other i.MX devices, while avoiding modifications to
critical registers that disrupt the PCIe functionality. It targets the
same problem as the following downstream commit:
https://github.com/nxp-imx/linux-imx/commit/4e92355e1f79d225ea842511fcfd42b343b32995
Unlike the downstream commit, this patch also resets the connected PCIe
device if possible. Without this reset, certain drivers, such as ath10k
or iwlwifi, will crash on resume. The device reset is also done by the
driver on other i.MX platforms, making this patch consistent with
existing practices.
Upon resuming, the kernel will hang and display an error. Here's an
example of the error encountered with the ath10k driver:
ath10k_pci 0000:01:00.0: Unable to change power state from D3hot to D0, device inaccessible
Unhandled fault: imprecise external abort (0x1406) at 0x0106f944
Without this patch, suspend/resume will fail on i.MX6QDL devices if a
PCIe device is connected.
[kwilczynski: commit log, added tag for stable releases] |
| In the Linux kernel, the following vulnerability has been resolved:
MIPS: Loongson64: DTS: Really fix PCIe port nodes for ls7a
Fix the dtc warnings:
arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider
arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider
arch/mips/boot/dts/loongson/loongson64g_4core_ls7a.dtb: Warning (interrupt_map): Failed prerequisite 'interrupt_provider'
And a runtime warning introduced in commit 045b14ca5c36 ("of: WARN on
deprecated #address-cells/#size-cells handling"):
WARNING: CPU: 0 PID: 1 at drivers/of/base.c:106 of_bus_n_addr_cells+0x9c/0xe0
Missing '#address-cells' in /bus@10000000/pci@1a000000/pci_bridge@9,0
The fix is similar to commit d89a415ff8d5 ("MIPS: Loongson64: DTS: Fix PCIe
port nodes for ls7a"), which has fixed the issue for ls2k (despite its
subject mentions ls7a). |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Use disable_delayed_work_sync
This makes use of disable_delayed_work_sync instead
cancel_delayed_work_sync as it not only cancel the ongoing work but also
disables new submit which is disarable since the object holding the work
is about to be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: Filter invalid inodes with missing lookup function
Add a check to the ovl_dentry_weird() function to prevent the
processing of directory inodes that lack the lookup function.
This is important because such inodes can cause errors in overlayfs
when passed to the lowerstack. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: don't do PV iret hypercall through hypercall page
Instead of jumping to the Xen hypercall page for doing the iret
hypercall, directly code the required sequence in xen-asm.S.
This is done in preparation of no longer using hypercall page at all,
as it has shown to cause problems with speculation mitigations.
This is part of XSA-466 / CVE-2024-53241. |
| In the Linux kernel, the following vulnerability has been resolved:
um: ubd: Do not use drvdata in release
The drvdata is not available in release. Let's just use container_of()
to get the ubd instance. Otherwise, removing a ubd device will result
in a crash:
RIP: 0033:blk_mq_free_tag_set+0x1f/0xba
RSP: 00000000e2083bf0 EFLAGS: 00010246
RAX: 000000006021463a RBX: 0000000000000348 RCX: 0000000062604d00
RDX: 0000000004208060 RSI: 00000000605241a0 RDI: 0000000000000348
RBP: 00000000e2083c10 R08: 0000000062414010 R09: 00000000601603f7
R10: 000000000000133a R11: 000000006038c4bd R12: 0000000000000000
R13: 0000000060213a5c R14: 0000000062405d20 R15: 00000000604f7aa0
Kernel panic - not syncing: Segfault with no mm
CPU: 0 PID: 17 Comm: kworker/0:1 Not tainted 6.8.0-rc3-00107-gba3f67c11638 #1
Workqueue: events mc_work_proc
Stack:
00000000 604f7ef0 62c5d000 62405d20
e2083c30 6002c776 6002c755 600e47ff
e2083c60 6025ffe3 04208060 603d36e0
Call Trace:
[<6002c776>] ubd_device_release+0x21/0x55
[<6002c755>] ? ubd_device_release+0x0/0x55
[<600e47ff>] ? kfree+0x0/0x100
[<6025ffe3>] device_release+0x70/0xba
[<60381d6a>] kobject_put+0xb5/0xe2
[<6026027b>] put_device+0x19/0x1c
[<6026a036>] platform_device_put+0x26/0x29
[<6026ac5a>] platform_device_unregister+0x2c/0x2e
[<6002c52e>] ubd_remove+0xb8/0xd6
[<6002bb74>] ? mconsole_reply+0x0/0x50
[<6002b926>] mconsole_remove+0x160/0x1cc
[<6002bbbc>] ? mconsole_reply+0x48/0x50
[<6003379c>] ? um_set_signals+0x3b/0x43
[<60061c55>] ? update_min_vruntime+0x14/0x70
[<6006251f>] ? dequeue_task_fair+0x164/0x235
[<600620aa>] ? update_cfs_group+0x0/0x40
[<603a0e77>] ? __schedule+0x0/0x3ed
[<60033761>] ? um_set_signals+0x0/0x43
[<6002af6a>] mc_work_proc+0x77/0x91
[<600520b4>] process_scheduled_works+0x1af/0x2c3
[<6004ede3>] ? assign_work+0x0/0x58
[<600527a1>] worker_thread+0x2f7/0x37a
[<6004ee3b>] ? set_pf_worker+0x0/0x64
[<6005765d>] ? arch_local_irq_save+0x0/0x2d
[<60058e07>] ? kthread_exit+0x0/0x3a
[<600524aa>] ? worker_thread+0x0/0x37a
[<60058f9f>] kthread+0x130/0x135
[<6002068e>] new_thread_handler+0x85/0xb6 |
| In the Linux kernel, the following vulnerability has been resolved:
um: net: Do not use drvdata in release
The drvdata is not available in release. Let's just use container_of()
to get the uml_net instance. Otherwise, removing a network device will
result in a crash:
RIP: 0033:net_device_release+0x10/0x6f
RSP: 00000000e20c7c40 EFLAGS: 00010206
RAX: 000000006002e4e7 RBX: 00000000600f1baf RCX: 00000000624074e0
RDX: 0000000062778000 RSI: 0000000060551c80 RDI: 00000000627af028
RBP: 00000000e20c7c50 R08: 00000000603ad594 R09: 00000000e20c7b70
R10: 000000000000135a R11: 00000000603ad422 R12: 0000000000000000
R13: 0000000062c7af00 R14: 0000000062406d60 R15: 00000000627700b6
Kernel panic - not syncing: Segfault with no mm
CPU: 0 UID: 0 PID: 29 Comm: kworker/0:2 Not tainted 6.12.0-rc6-g59b723cd2adb #1
Workqueue: events mc_work_proc
Stack:
627af028 62c7af00 e20c7c80 60276fcd
62778000 603f5820 627af028 00000000
e20c7cb0 603a2bcd 627af000 62770010
Call Trace:
[<60276fcd>] device_release+0x70/0xba
[<603a2bcd>] kobject_put+0xba/0xe7
[<60277265>] put_device+0x19/0x1c
[<60281266>] platform_device_put+0x26/0x29
[<60281e5f>] platform_device_unregister+0x2c/0x2e
[<6002ec9c>] net_remove+0x63/0x69
[<60031316>] ? mconsole_reply+0x0/0x50
[<600310c8>] mconsole_remove+0x160/0x1cc
[<60087d40>] ? __remove_hrtimer+0x38/0x74
[<60087ff8>] ? hrtimer_try_to_cancel+0x8c/0x98
[<6006b3cf>] ? dl_server_stop+0x3f/0x48
[<6006b390>] ? dl_server_stop+0x0/0x48
[<600672e8>] ? dequeue_entities+0x327/0x390
[<60038fa6>] ? um_set_signals+0x0/0x43
[<6003070c>] mc_work_proc+0x77/0x91
[<60057664>] process_scheduled_works+0x1b3/0x2dd
[<60055f32>] ? assign_work+0x0/0x58
[<60057f0a>] worker_thread+0x1e9/0x293
[<6005406f>] ? set_pf_worker+0x0/0x64
[<6005d65d>] ? arch_local_irq_save+0x0/0x2d
[<6005d748>] ? kthread_exit+0x0/0x3a
[<60057d21>] ? worker_thread+0x0/0x293
[<6005dbf1>] kthread+0x126/0x12b
[<600219c5>] new_thread_handler+0x85/0xb6 |
| In the Linux kernel, the following vulnerability has been resolved:
um: vector: Do not use drvdata in release
The drvdata is not available in release. Let's just use container_of()
to get the vector_device instance. Otherwise, removing a vector device
will result in a crash:
RIP: 0033:vector_device_release+0xf/0x50
RSP: 00000000e187bc40 EFLAGS: 00010202
RAX: 0000000060028f61 RBX: 00000000600f1baf RCX: 00000000620074e0
RDX: 000000006220b9c0 RSI: 0000000060551c80 RDI: 0000000000000000
RBP: 00000000e187bc50 R08: 00000000603ad594 R09: 00000000e187bb70
R10: 000000000000135a R11: 00000000603ad422 R12: 00000000623ae028
R13: 000000006287a200 R14: 0000000062006d30 R15: 00000000623700b6
Kernel panic - not syncing: Segfault with no mm
CPU: 0 UID: 0 PID: 16 Comm: kworker/0:1 Not tainted 6.12.0-rc6-g59b723cd2adb #1
Workqueue: events mc_work_proc
Stack:
60028f61 623ae028 e187bc80 60276fcd
6220b9c0 603f5820 623ae028 00000000
e187bcb0 603a2bcd 623ae000 62370010
Call Trace:
[<60028f61>] ? vector_device_release+0x0/0x50
[<60276fcd>] device_release+0x70/0xba
[<603a2bcd>] kobject_put+0xba/0xe7
[<60277265>] put_device+0x19/0x1c
[<60281266>] platform_device_put+0x26/0x29
[<60281e5f>] platform_device_unregister+0x2c/0x2e
[<60029422>] vector_remove+0x52/0x58
[<60031316>] ? mconsole_reply+0x0/0x50
[<600310c8>] mconsole_remove+0x160/0x1cc
[<603b19f4>] ? strlen+0x0/0x15
[<60066611>] ? __dequeue_entity+0x1a9/0x206
[<600666a7>] ? set_next_entity+0x39/0x63
[<6006666e>] ? set_next_entity+0x0/0x63
[<60038fa6>] ? um_set_signals+0x0/0x43
[<6003070c>] mc_work_proc+0x77/0x91
[<60057664>] process_scheduled_works+0x1b3/0x2dd
[<60055f32>] ? assign_work+0x0/0x58
[<60057f0a>] worker_thread+0x1e9/0x293
[<6005406f>] ? set_pf_worker+0x0/0x64
[<6005d65d>] ? arch_local_irq_save+0x0/0x2d
[<6005d748>] ? kthread_exit+0x0/0x3a
[<60057d21>] ? worker_thread+0x0/0x293
[<6005dbf1>] kthread+0x126/0x12b
[<600219c5>] new_thread_handler+0x85/0xb6 |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix ordering of qlen adjustment
Changes to sch->q.qlen around qdisc_tree_reduce_backlog() need to happen
_before_ a call to said function because otherwise it may fail to notify
parent qdiscs when the child is about to become empty. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/task_stack: fix object_is_on_stack() for KASAN tagged pointers
When CONFIG_KASAN_SW_TAGS and CONFIG_KASAN_STACK are enabled, the
object_is_on_stack() function may produce incorrect results due to the
presence of tags in the obj pointer, while the stack pointer does not have
tags. This discrepancy can lead to incorrect stack object detection and
subsequently trigger warnings if CONFIG_DEBUG_OBJECTS is also enabled.
Example of the warning:
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1 at lib/debugobjects.c:557 __debug_object_init+0x330/0x364
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5 #4
Hardware name: linux,dummy-virt (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __debug_object_init+0x330/0x364
lr : __debug_object_init+0x330/0x364
sp : ffff800082ea7b40
x29: ffff800082ea7b40 x28: 98ff0000c0164518 x27: 98ff0000c0164534
x26: ffff800082d93ec8 x25: 0000000000000001 x24: 1cff0000c00172a0
x23: 0000000000000000 x22: ffff800082d93ed0 x21: ffff800081a24418
x20: 3eff800082ea7bb0 x19: efff800000000000 x18: 0000000000000000
x17: 00000000000000ff x16: 0000000000000047 x15: 206b63617473206e
x14: 0000000000000018 x13: ffff800082ea7780 x12: 0ffff800082ea78e
x11: 0ffff800082ea790 x10: 0ffff800082ea79d x9 : 34d77febe173e800
x8 : 34d77febe173e800 x7 : 0000000000000001 x6 : 0000000000000001
x5 : feff800082ea74b8 x4 : ffff800082870a90 x3 : ffff80008018d3c4
x2 : 0000000000000001 x1 : ffff800082858810 x0 : 0000000000000050
Call trace:
__debug_object_init+0x330/0x364
debug_object_init_on_stack+0x30/0x3c
schedule_hrtimeout_range_clock+0xac/0x26c
schedule_hrtimeout+0x1c/0x30
wait_task_inactive+0x1d4/0x25c
kthread_bind_mask+0x28/0x98
init_rescuer+0x1e8/0x280
workqueue_init+0x1a0/0x3cc
kernel_init_freeable+0x118/0x200
kernel_init+0x28/0x1f0
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------ |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Clear virtualized VMLOAD/VMSAVE on Zen4 client
A number of Zen4 client SoCs advertise the ability to use virtualized
VMLOAD/VMSAVE, but using these instructions is reported to be a cause
of a random host reboot.
These instructions aren't intended to be advertised on Zen4 client
so clear the capability. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hdcp: Add encoder check in intel_hdcp_get_capability
Sometimes during hotplug scenario or suspend/resume scenario encoder is
not always initialized when intel_hdcp_get_capability add
a check to avoid kernel null pointer dereference. |